Introduzione a Matlab/Simulink

Robotica Industriale Prof. P. Rocco a.a.2003/2004

Ing. M. Gritti e Ing. L. Bascetta

Contenuti

- Introduzione a Matlab
- Presentazione Control System Toolbox
- Introduzione a Simulink
- Esempi

Contenuti

Introduzione a Matlab

- Variabili, matrici e vettori e polinomi
- Tracciamento di grafici
- Librerie e Toolbox
- Presentazione Control System Toolbox
- Introduzione a Simulink
- Esempi

Variabili

Definizione di variabili

- » a=2; b=4;
- Non occorre dichiarare preliminarmente le variabili
- Le variabili vengono memorizzate nel Workspace
 - whos mostra la lista delle variabili
 - clear var elimina la variabile var dal workspace
 - clear all elimina tutte le variabili del workspace
- II `; ' al termine dell'istruzione sopprime la visualizzazione dell'output


```
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \Rightarrow A = \begin{bmatrix} 1, 2; 3, 4 \end{bmatrix};
```

- Selezione degli elementi di una matrice
 » A(1,2)
 ans =
 2
- Per selezionare righe e colonne si utilizza la wildcard `: '
 - Selezione della prima riga di A \Rightarrow A(1,:)
 - Selezione della prima colonna di $A \Rightarrow A(:,1)$
 - Selezione di un intervallo $\Rightarrow A(1,1:2)$

Vettori

- I vettori vengono utilizzati per rappresentare segnali o per la tracciatura di grafici
 - Sintassi
 - » v = val_iniziale:passo:val_finale;
 - Esempio
 - » v=0:100; % Se il passo è 1 si può omettere
 - » v=0:0.01:1;
- Operazioni su vettori
 - » a + b; a b;
 - » a * b (Errore!!); a * b';
 - » a .* b % Prodotto elemento per elemento
 - » a.^2 % Quadrato elemento per elemento

Polinomi

Si rappresentano come vettori

- Esempio: $P(s) = s^2 + 2s + 1$
- » P = [1 2 1];
- Calcolo delle radici
- » roots(P)
- Costruzione di un polinomio con radici assegnate
- » R = poly([-1 -2]) %Ritorna un vettore

Rappresentazioni grafiche

- plot(x,y) : traccia il grafico dei punti che hanno come ascisse gli elementi di x e come ordinate gli elementi di y
 - Esempio: tracciatura di un'esponenziale
 - » x=0:0.05:5;
 - » y=exp(x);
 - » plot(x,y)

Librerie di funzioni

- Matlab mette a disposizione numerose librerie di funzioni
 - Funzioni generiche (es. sin, abs, real, eig, det, roots)
 - Funzioni specifiche (es. bode, step, nyquist)
- Per ottenere un aiuto si utilizza il comando help
 - help fornisce l'elenco delle funzioni per libreria
 - help libreria fornisce una breve descrizione delle funzioni di una certa libreria
 - help funzione fornisce una dettagliata descrizione di una funzione

Contenuti

Introduzione a Matlab

Presentazione Control System Toolbox

- Rappresentazione e analisi di un sistema LTI
- Introduzione a Simulink
- Esempi

Descrizione di un sistema LTI

- Un sistema LTI può essere specificato:
 - Attraverso una rappresentazione nello spazio con una quaterna di matrici (A,B,C,D)

 $C = [-1 \ 0.25]; d = 0;$

$$\gg$$
 sys1 = ss(A,B,C,d)

- Attraverso una funzione di trasferimento con una coppia di polinomi N(s) e D(s)
 - » $N=[-1 \ 1]; D=[1 \ 2 \ 2];$

 \gg sys2 = tf(N,D)

 Le funzioni ss(sys2) e tf(sys1) permettono la conversione tra le due rappresentazioni

Analisi di un sistema LTI

- Risposta allo scalino
 - » step(sys)
- Diagrammi di Bode (solo del modulo)
 - » bode(sys) (» bodemag(sys))
- Pulsazione critica e margine di fase
 - » margin(sys)
- Diagramma di Nyquist
 - » nyquist(sys)
- Mappa poli-zeri
 - » pzmap(sys)

Contenuti

- Introduzione a Matlab
- Presentazione Control System Toolbox
- Introduzione a Simulink
 - Introduzione alla simulazione
 - Cenni ai metodi di integrazione numerica
 - Scelta dei parametri di simulazione
- Esempi

Fasi della simulazione

- Scrittura del modello matematico
- Programmazione del modello
 - Con un editor grafico (es. Simulink) o con un linguaggio orientato al calcolo (es. Matlab)
 - Assegnamento dei parametri del modello
- Simulazione (in senso stretto)
 - Calcolo dello stato di regime (condizioni iniziali)
 - Assegnamento dei parametri di simulazione
 - Scelta degli ingressi durante il transitorio
 - Avvio della simulazione
- Analisi dei risultati

Ciclo di una simulazione Il ciclo di simulazione procede iterativamente Configurazione Modellazione modello Modifiche al modello Modifiche ai parametri Simulazione Modifiche alla condizione iniziale Modifiche agli ingressi del modello

- Modifica dei parametri di simulazione (metodo di integrazione, passo di integrazione, tolleranza, ...)
- Modifica del modello

Introduzione a Simulink (1)

- Simulink è un toolbox di MATLAB per la simulazione dei sistemi dinamici
 - Lineari e non lineari
 - Continui, discreti o misti
- Il modello viene costruito graficamente, assemblando blocchi elementari
- I blocchi base sono raggruppati in librerie specializzate, a seconda delle funzioni svolte
- Simulink viene avviato digitando simulink al prompt di Matlab

Integrazione Matlab - Simulink

Simulink e Matlab interagiscono attraverso il workspace

- I parametri del modello possono essere specificati all'interno dei blocchi Simulink tramite variabili simboliche, il cui valore è memorizzato nel workspace di Matlab
- I risultati della simulazione possono essere memorizzati nel workspace con un blocco di tipo ToWorkspace

Suggerimenti

- Creare un file parametri_modello.m contenente i parametri da caricare prima della simulazione
- Tracciare i grafici dei transitori con i comandi di Matlab

I blocchi più importanti

Costruzione di un semplice modello

Simulare la risposta a scalino del sistema

Costruzione di un regolatore PID

Costruire il modello di un regolatore PID

Contenuti

- Introduzione a Matlab
- Presentazione Control System Toolbox
- Introduzione a Simulink
- Esempi
 - Controllo di un doppio integratore

Controllo di un doppio integratore

Modello del sistema da controllare

Taratura del regolatore (1)

Regolatore PID (scolastico)

$$R_{PID}(s) = K_C \left(1 + \frac{1}{T_I s} + T_D s \right) = \frac{K_C (T_I T_D s^2 + T_I s + 1)}{T_I s}$$

Si sceglie $T_I = 4T_D$ per avere due zeri coincidenti

$$R_{PID}(s) = \frac{K_C \left(\frac{1}{4}T_I^2 s^2 + T_I s + 1\right)}{T_I s} = \frac{K_C \left(\frac{1}{2}T_I s + 1\right)^2}{T_I s}$$

Funzione d'anello

$$L(s) = R_{PID}(s) \cdot G(s) = \frac{K_C \left(\frac{1}{2}T_I s + 1\right)^2}{s^3 T_I}$$

Taratura del regolatore (2)

- Si sceglie T_I per posizionare gli zeri all'incirca una decade prima della banda passante richiesta (es $\omega_c = 50 \ rad/s \Rightarrow \omega_z = 5 \ rad/s$) $T_I = 0.4 \ T_D = 0.1$
- Si "aggiusta" il guadagno per ottenere la banda passante desiderata
 - » Kc = 1; Ti = 0.4; Td = 0.1;
 - » R = tf(Kc*[Ti*Td Ti 1],[Ti 0])
 - » L = R*G % Funzione d'anello
 - » margin(L)

Taratura del regolatore (3)

Taratura del regolatore (4)

Sistema Simulink

Esempi di simulazioni (1)

Risposta allo scalino

Esempi di simulazioni (2)

Risposta al disturbo di carico

