

Controllo del moto e robotica industriale

<u>Schemi avanzati di controllo</u> <u>per servomeccanismi</u>

Prof. Paolo Rocco (paolo.rocco@polimi.it)

Oltre il PID

Anche se il nucleo di un controllore in anello chiuso per il controllo del moto è sempre costituito da un regolatore PID (o P/PI), vi sono altri schemi di controllo che possono completare o sostituire lo schema base. Alcuni di questi schemi trovano corrente applicazione nei CN ed azionamenti commerciali. Nel seguito ci occuperemo dei seguenti schemi:

- Filtri notch
- Osservatore del disturbo di coppia
- Controllo nello spazio di stato
- Input shaping

Filtro notch

Un filtro notch è un sistema dinamico progettato per cancellare una coppia di poli complessi e coniugati, tipicamente a basso smorzamento, presenti nel sistema sotto controllo. È quindi caratterizzato dalla funzione di trasferimento:

$$G_{nf}(s) = \frac{s^2 + 2\zeta_1 \omega_n s + \omega_n^2}{s^2 + 2\zeta_2 \omega_n s + \omega_n^2}$$

dove ω_n è la pulsazione dei poli complessi da cancellare, $\zeta_1 \in \zeta_2$ sono smorzamenti, il primo piccolo, il secondo grande.

Il diagramma di Bode è caratterizzato da una "gola":

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [3]

Filtro notch: utilizzo

In un sistema di controllo del moto, il filtro notch viene di norma inserito nell'anello di velocità, in serie al regolatore PI:

$$\xrightarrow{\dot{q}^{o}_{m}} \xrightarrow{+} R_{PI}(s) \longrightarrow G_{nf}(s) \xrightarrow{\tau_{m}} G_{vm}(s) \xrightarrow{\dot{q}_{m}} G_{nf}(s) = \frac{s^{2} + 2\zeta_{1}\omega_{n}s + \omega_{n}^{2}}{s^{2} + 2\zeta_{2}\omega_{n}s + \omega_{n}^{2}}$$

La pulsazione naturale ω_n del filtro viene posta uguale alla stima disponibile della pulsazione ω_p dei poli del sistema sotto controllo, e lo smorzamento ζ_1 degli zeri del filtro approssima lo smorzamento dei poli ζ_p .

N.B. In diversi CN, il filtro viene assegnato dando la frequenza da bloccare (ω_n) e la "banda a –3dB"

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [4]

Filtro notch: problemi

Sebbene il filtro notch possa essere utile per migliorare la risposta al riferimento, ci sono **alcuni problemi** connessi al suo utilizzo:

- La frequenza di risonanza sulla quale sintonizzare gli zeri del filtro deve essere conosciuta con buona approssimazione
- I poli poco smorzati del processo cancellati dal filtro rimangono autovalori del sistema in anello chiuso e riemergono come poli di altre funzioni di trasferimento, tipicamente quella dal disturbo di carico all'uscita.
- La realizzazione digitale dei regolatori produce una certa distorsione della risposta in frequenza che potrebbe non far coincidere la frequenza effettiva degli zeri del filtro digitale con la frequenza di progetto. Vi sono metodi per ovviare a questo problema (frequency pre-warping)

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [5]

Simulazioni

Simuliamo in Simulink il controllo P/PI lato motore con filtro notch all'interno dell'anello di velocità:

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [6]

Simulazioni

Sistema: $\omega_z=2$

200,
$$\rho=1$$
, $\zeta_z=0.1$

PI di velocità: $\tau_{iv}=10$, $\tilde{\omega}_{cv}=1$ P di posizione: $\gamma_{pp}=0.1$

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [7]

Conclusione: il filtro di fatto non aiuta a conferire smorzamento ai poli in anello chiuso.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [8]

Filtro notch fuori dall'anello di velocità

Con gli stessi guadagni del P/PI si ottengono dei poli in anello chiuso più smorzati.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [9]

Simulazioni

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [10]

Simulazioni

Sistema: $\omega_z = 200$,

 $\omega_z = 200, \rho = 1, \zeta_z = 0.1$

PI di velocità: $\tau_{iv}=10$, $\tilde{\omega}_{cv}=1$ P di posizione: $\gamma_{pp}=0.1$

Si ottiene un sensibile miglioramento della risposta lato carico

disturbo di coppia

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [11]

Filtro notch e controllo lato carico

Il vantaggio del filtro notch in questo caso appare ancora più rilevante.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [12]

Simulazioni

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [13]

Simulazioni

Sistema:

$$\omega_z = 200, \rho = 1, \zeta_z = 0.1$$

PI di velocità: $\tau_{iv}=10$, $\tilde{\omega}_{cv}=1$ P di posizione: $\gamma_{pp}=0.1$

Si ottiene un sensibile miglioramento della risposta al riferimento lato carico. La risposta al disturbo però peggiora.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [14]

Osservatore del disturbo

L'osservatore del disturbo di coppia (TDO: Torque Disturbance Observer) è uno schema molto utilizzato nel controllo del moto, in particolare in applicazioni dove alla coppia nominale prodotta dal motore si sovrapponga un disturbo. Il metodo stima la coppia di disturbo in ingresso al motore, compensandola con una retroazione positiva sul comando.

Consideriamo inizialmente un generico sistema con ingresso manipolabile u e disturbo di carico d:

$$\xrightarrow{u \quad +} \xrightarrow{y} P(s) \xrightarrow{y} \xrightarrow{y}$$

Ci proponiamo di progettare un sistema che sulla base dei valori assunti da u e y determini una stima del disturbo.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [15]

Osservatore del disturbo $\begin{array}{c} u^{*} + u + d \\ \downarrow & \downarrow & \downarrow & \downarrow \\ d & \downarrow & Q(s) + & Q(s)P_{n}^{-1}(s) \\ \hline & DO \end{array}$

In questo schema $P_n(s)$ è un modello del sistema sotto controllo, di funzione di trasferimento P(s), mentre Q(s) è un filtro passabasso a guadagno unitario tale da rendere realizzabile la funzione di trasferimento $Q(s)P_n^{-1}(s)$. La stima del disturbo prodotta dall'osservatore (DO) è la seguente:

$$\hat{d}(s) = Q(s)u(s) - P_n^{-1}(s)Q(s)y(s) = Q(s)u(s) - P_n^{-1}(s)Q(s)P(s)(d(s) + u(s)) = Q(s)(1 - P_n^{-1}(s)P(s))u(s) - Q(s)P_n^{-1}(s)P(s)d(s)$$

se: $P_n(s) \approx P(s)$ si ha: $\hat{d}(s) \approx -Q(s)d(s)$

Pertanto, nella banda passante del filtro Q, il disturbo è stimato correttamente.

Osservatore del disturbo

Risolvendo lo schema a blocchi, si ottiene:

$$y(s) = \frac{P(s)(1 - Q(s))}{1 - Q(s) + P_n^{-1}(s)P(s)Q(s)} d(s) + \frac{P(s)}{1 - Q(s) + P_n^{-1}(s)P(s)Q(s)} u^*(s)$$

se: $P_n(s) \approx P(s)$
 $y(s) = P(s)(1 - Q(s))d(s) + P(s)u^*(s)$

Pertanto, nella banda passante del filtro Q, il sistema dal nuovo ingresso u^* all'uscita y è virtualmente esente dal disturbo.

Osservatore del disturbo di coppia

Consideriamo ora un motore caratterizzato dal momento di inerzia J_m e dal coefficiente di attrito D_m . La funzione di trasferimento (da coppia a velocità) è:

$$P(s) = \frac{1}{J_m s + D_m}$$

Adottando un filtro Q del primo ordine e rielaborando lo schema dell'osservatore del disturbo si ottiene:

La coppia di disturbo è costituita da una coppia esogena τ_c e dalla coppia trasmessa dal carico τ_{lm} . T_f è la costante di tempo (piccola) del filtro Q.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [18]

Osservatore del disturbo di coppia

Elaborando lo schema a blocchi si ottiene:

$$Q_m(s) = \frac{1}{J_m s^2 + D_m s} \Big[\tau_m^*(s) - G_f(s) (\tau_c(s) + \tau_{lm}(s)) \Big]$$

con:

$$G_f(s) = \frac{sT_f}{1 + sT_f}$$

filtro passa-alto.

Il disturbo di coppia viene quindi filtrato molto efficacemente, in particolare in bassa frequenza.

Si osservi che il modello di riferimento è quello di un giunto rigido.

Che cosa cambia se tra motore e carico c'è un accoppiamento elastico?

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [19]

TDO e modello elastico

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [20]

TDO e modello elastico

Elaborando lo schema a blocchi con $\tau_d=0$ si ottiene:

$$Q_{m}(s) = \frac{J_{lr}s^{2} + D_{el}s + K_{el}}{\varphi_{f}(s)} \Big[\tau_{m}^{*}(s) - G_{f}(s)\tau_{c}(s)\Big],$$

$$Q_{l}(s) = \frac{D_{el}s + K_{el}}{\varphi_{f}(s)} \Big[\tau_{m}^{*}(s) - G_{f}(s)\tau_{c}(s)\Big]$$

con:
$$\varphi_f(s) = (J_{lr}s^2 + D_{el}s + K_{el})(J_ms^2 + D_ms) + G_f(s)(D_{el}s + Kel)J_ms^2$$

Per $T_f \rightarrow 0$:

$$Q_m(s) \approx \frac{1}{J_m s^2 + D_m s} \tau_m^*(s)$$
$$Q_l(s) \approx \frac{K_{el} + sD_{el}}{J_{lr} s^2 + D_{el} s + K_{el}} Q_m(s)$$

Il disturbo di coppia è rigettato e si può controllare il motore con un modello rigido...

...ma il carico oscilla liberamente, con la dinamica che avrebbe se il rotore fosse bloccato ("locked frequency").

Simulazione

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [22]

Simulazione

Conclusione: L'osservatore viene "tratto in inganno": interpreta la retroazione di coppia dalla trasmissione come se fosse un disturbo esogeno e cerca di neutralizzarlo. Bisogna usare il TDO con attenzione.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [23]

Controllo nello spazio di stato

1) L'obiettivo ultimo è controllare la posizione del carico...

2) Un controllo perfetto del motore lascia il carico in anello aperto...

3) ...si cercano soluzioni che tengano conto dell'intero stato del sistema.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [24]

Modello nello spazio di stato

$$\mathbf{x} = \begin{bmatrix} q_m & \dot{q}_m & nq_l & n\dot{q}_l \end{bmatrix}^T \qquad \dot{\mathbf{x}} = A\mathbf{x} + b\mathbf{u} \\ u = \tau_m, \quad y = q_m \qquad \qquad y = c\mathbf{x} \\ \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{K_{el}}{J_m} & -\frac{D_m + D_{el}}{J_m} & \frac{K_{el}}{J_m} & \frac{D_{el}}{J_m} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}, \quad \mathbf{b} =$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ \frac{K_{el}}{J_{lr}} & \frac{D_{el}}{J_{lr}} & -\frac{K_{el}}{J_{lr}} & -\frac{D_{el}}{J_{lr}} \end{bmatrix}$$

 $c = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$

 $J_{lr} = J_l / n^2$

- Raggiungibile da *u*
- Osservabile da y

0 1

 $\overline{J_m}_0$

0

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [25]

Schema di controllo

Da progettare:

- Azione integrale
- Legge di controllo (u = Kx)
- Stima dello stato
- Azioni in anello aperto

Introduzione dell'azione integrale

Si introduce l'azione integrale per ottenere errore nullo a regime sul setpoint anche in presenza di disturbi costanti. Detto x_I lo stato dell'integratore si avrà:

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}\boldsymbol{u}$$

$$\dot{x}_I = \overline{y} - y = -cx + \overline{y}$$

A questo punto si "allarga" lo stato del sistema, aggiungendo lo stato dell'integratore:

$$z = \begin{bmatrix} x \\ x_I \end{bmatrix}$$

Le matrici si modificano di conseguenza:

 $\dot{z} = Fz + g_u u + g_y \overline{y}$

$$\boldsymbol{F} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ -\boldsymbol{c} & 0 \end{bmatrix}, \quad \boldsymbol{g}_{u} = \begin{bmatrix} \boldsymbol{b} \\ 0 \end{bmatrix}, \quad \boldsymbol{g}_{y} = \begin{bmatrix} \boldsymbol{0} \\ 1 \end{bmatrix}$$

Grazie al **principio di separazione**, potremo procedere all'assegnamento degli autovalori del sistema in anello chiuso come se lo stato del sistema fosse accessibile, trattando separatamente il problema della stima dello stato dall'uscita.

Volendo allocare gli autovalori del sistema "aumentato" occorrerà preliminarmente verificare che la coppia (F, g_u) sia **raggiungibile**: si può dimostrare che questo è vero se e solo se il sistema sotto controllo è raggiungibile ed osservabile e se la sua funzione di trasferimento **non ha zeri in** s=0.

Poiché queste condizioni sono soddisfatte, si può procedere all'assegnamento degli autovalori con regolazione a zero dell'errore.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [28]

Posizionamento degli autovalori

Si scelgono i guadagni in modo da assegnare gli autovalori della matrice in anello chiuso:

$$\dot{z} = Fz + g_{u}u$$

$$u = \widetilde{K}z, \quad \widetilde{K} = \begin{bmatrix} K & k_{I} \end{bmatrix} \implies \dot{z} = \begin{pmatrix} F + g_{u}\widetilde{K} \end{pmatrix}z$$

In linea di principio, gli autovalori possono essere scelti arbitrariamente. In realtà la **robustezza** dell'assegnamento degli autovalori dipende fortemente dalle posizioni scelte per gli autovalori desiderati in anello chiuso.

Una misura di robustezza è il condizionamento della matrice formata dagli **autovettori** del sistema in anello chiuso: più ortogonali sono gli autovettori, migliore è il condizionamento, più robusto è il sistema in anello chiuso.

Controllo ottimo LQ

Un'alternativa è scegliere i guadagni in modo da minimizzare la cifra di merito quadratica:

$$J = \int_{0}^{\infty} \left[z(t)^{T} Q z(t) + u(t)^{2} \right] dt$$

La routine Matlab "lqr" fornisce la soluzione del problema (cioè la matrice \tilde{K}) dati il sistema sotto controllo e la matrice Q (che deve essere semidefinita positiva).

Come scegliere la matrice dei pesi Q? Si può procedere per tentativi oppure seguire strade più strutturate, per le quali si rimanda alla letteratura specifica.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [30]

Ricostruttore asintotico dello stato

Si scelgono i guadagni del ricostruttore in modo da assegnare gli autovalori della dinamica dell'errore di stima:

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx \\ \dot{\hat{x}} = A\hat{x} + bu + L(\hat{y} - y) \end{cases} \implies \dot{\varepsilon} = (A + Lc)\varepsilon \qquad [\varepsilon = x - \hat{x}] \\ \hat{y} = c\hat{x} \end{cases}$$

- Come è noto il problema è risolubile se la coppia (*A*, *c*) è osservabile (come nel nostro caso).
- Più grande è il modulo degli autovalori di *A*+*Lc*, più veloce è la ricostruzione della dinamica, ma più sensibile è la stima ai rumori di misura.
- Anche questo problema può essere impostato in termini di minimizzazione di una cifra di merito integrale, progettando un **filtro di Kalman**. Occorre però modellare il sistema in ambito stocastico (i disturbi vanno interpretati come processi stocastici con determinate medie e varianze).

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [31]

Progetto delle azioni di anticipo

Per conferire al progetto **precisione dinamica** (prontezza e grado di stabilità nei transitori di inseguimento del riferimento) si adottano dei componenti in **feedforward**.

Si osservi che:

Numeratore della f.d.t. da τ_m a q_m

$$G_k(s) = \boldsymbol{c}(s\boldsymbol{I}_4 - (\boldsymbol{A} + \boldsymbol{b}\boldsymbol{K}))^{-1}\boldsymbol{b} = \frac{B_m(s)}{\chi_{A+bK}(s)}$$

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [32]

Progetto delle azioni di anticipo

Specificando F(s) si assegna completamente la risposta del sistema al riferimento. Per ottenere operatori **causali**, il grado relativo di *F* deve essere pari almeno a 3.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [33]

Apparato sperimentale

Vedremo ora alcuni confronti sperimentali tra un controllore progettato nello spazio di stato (LQG) ed un controllore PID, chiuso lato motore.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [34]

Confronti sperimentali

- Rotazione di 40° in 0.5 s
- Accelerazione max: 1200 rad/s²

- Rotazione di 30° in 0.5 s
- Accelerazione max: 900 rad/s²

Si confrontano le velocità lato carico, ottenute per integrazione del segnale prodotto da un accelerometro montato sul carico.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [35]

Confronti sperimentali

- Rotazione di 50° in 0.9 s
- Accelerazione max: 500 rad/s²

A basse velocità si ha la comparsa di ripple

Conclusioni sui metodi nello spazio di stato:

Si manifestano dei vantaggi rispetto al controllore PID, che però si pagano in termini di complessità di progettazione, realizzazione, codifica e debugging del controllore.

Input shaping

Tutti i metodi di controllo visti finora prevedono una retroazione della variabile controllata: sono infatti metodi **in anello chiuso**.

L'input shaping è invece un metodo in anello aperto (feedforward): consiste nel modificare l'ingresso al sistema sotto controllo in modo tale da annullare l'effetto di una o più risonanze presenti nel sistema stesso. Richiede la conoscenza della pulsazione naturale e dello smorzamento dei poli complessi e coniugati.

Può essere utilizzato con un certo successo nel controllo di strutture flessibili, quali per esempio bracci robotici per applicazioni spaziali.

RALF, Georgia Tech (Atlanta)

Risposta all'impulso

Si consideri un sistema dinamico con una coppia di poli complessi e coniugati:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

La risposta ad un impulso di ampiezza k_i che interviene all'istante t_i è data dall'espressione:

$$y_i(t) = B_i e^{-\zeta \omega_n(t-t_i)} \sin\left(\omega_n \sqrt{1-\zeta^2} (t-t_i)\right), \quad t \ge t_i$$

con:

$$B_i = k_i \frac{\omega_n}{\sqrt{1 - \zeta^2}}$$

 $\Delta T = \frac{2\pi}{\omega_n \sqrt{1 - \zeta^2}}$

Il periodo (o pseudoperiodo) dell'oscillazione vale:

Due impulsi

Si supponga ora di eccitare il sistema con due impulsi, agli istanti t_1 e t_2 $(t_2 > t_1)$. La risposta del sistema è la somma delle due risposte all'impulso:

$$y(t) = B_1 e^{-\zeta \omega_n (t-t_1)} \sin \left(\omega_n \sqrt{1-\zeta^2} (t-t_1) \right) + B_2 e^{-\zeta \omega_n (t-t_2)} \sin \left(\omega_n \sqrt{1-\zeta^2} (t-t_2) \right), \quad t \ge t_2$$

È possibile fare in modo che y sia **nulla** a partire dall'istante t_2 ? È sufficiente imporre le seguenti condizioni:

$$\begin{cases} k_1 e^{\zeta \omega_n t_1} \sin\left(\omega_n \sqrt{1-\zeta^2} t_1\right) + k_2 e^{\zeta \omega_n t_2} \sin\left(\omega_n \sqrt{1-\zeta^2} t_2\right) = 0\\ k_1 e^{\zeta \omega_n t_1} \cos\left(\omega_n \sqrt{1-\zeta^2} t_1\right) + k_2 e^{\zeta \omega_n t_2} \cos\left(\omega_n \sqrt{1-\zeta^2} t_2\right) = 0\end{cases}$$

Si tratta di un sistema di due equazioni nelle quattro incognite k_1 , k_2 , t_1 e t_2 . Per risolverlo possiamo imporre $t_1=0$ e la condizione di normalizzazione sulle ampiezze:

 $k_1 + k_2 = 1$

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [39]

Risolvendo il sistema si trova:

$$t_1 = 0, \quad t_2 = \frac{\Delta T}{2}, \quad k_1 = \frac{1}{1+\alpha}, \quad k_2 = \frac{\alpha}{1+\alpha} \qquad \left(\alpha = e^{-\zeta \pi / \sqrt{1-\zeta^2}}\right)$$

Il secondo impulso va quindi dato dopo metà periodo. Si osservi che entrambi gli impulsi sono positivi.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [40]

Due impulsi: robustezza

Se i parametri ω_n e ζ sono noti con imprecisione, il risultato dell'operazione peggiora. Ad esempio, con un errore del 10% su ω_n e del 20% su ζ si ottiene:

Per migliorare la robustezza del metodo, si possono utilizzare più di due impulsi.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [41]

Tre impulsi

Si supponga quindi di eccitare il sistema con tre impulsi, agli istanti t_1 , t_2 e t_3 $(t_3 > t_2 > t_1)$. La risposta del sistema è la somma delle tre risposte all'impulso:

$$y(t) = \sum_{i=1}^{3} B_i e^{-\zeta \omega_n (t-t_i)} \sin \left(\omega_n \sqrt{1-\zeta^2} (t-t_i) \right), \quad t \ge t_3$$

Per fare in modo che y sia **nulla** a partire dall'istante t_3 si impone:

$$\begin{cases} \sum_{i=1}^{3} k_i e^{\zeta \omega_n t_i} \sin\left(\omega_n \sqrt{1 - \zeta^2} t_i\right) = 0\\ \sum_{i=1}^{3} k_i e^{\zeta \omega_n t_i} \cos\left(\omega_n \sqrt{1 - \zeta^2} t_i\right) = 0\end{cases}$$

Si tratta di un sistema di due equazioni nelle sei incognite k_1 , k_2 , k_3 , t_1 , t_2 e t_3 . Possiamo però imporre anche che non solo y ma **anche la sua derivata** sia nulla a partire dall'istante t_3 . In questo modo si generano altre due equazioni:

$$\begin{cases} \sum_{i=1}^{3} k_i t_i e^{\zeta \omega_n t_i} \sin\left(\omega_n \sqrt{1 - \zeta^2} t_i\right) = 0\\ \sum_{i=1}^{3} k_i t_i e^{\zeta \omega_n t_i} \cos\left(\omega_n \sqrt{1 - \zeta^2} t_i\right) = 0\end{cases}$$

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [42]

Risolvendo il sistema imponendo $t_1=0$ e la condizione di normalizzazione sulle ampiezze $k_1 + k_2 + k_3 = 1$ si trova:

$$t_1 = 0, \quad t_2 = \frac{\Delta T}{2}, \quad t_3 = \Delta T, \quad k_1 = \frac{1}{1 + 2\alpha + \alpha^2}, \quad k_2 = \frac{2\alpha}{1 + 2\alpha + \alpha^2}, \quad k_3 = \frac{\alpha^2}{1 + 2\alpha + \alpha^2}$$

Il secondo impulso va quindi dato dopo metà periodo, il terzo dopo un intero periodo. Si osservi che tutti gli impulsi sono positivi.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [43]

Tre impulsi: robustezza

Con un errore del 10% su ω_n e del 20% su ζ si ottiene:

Il comportamento, nonostante l'incertezza sui parametri, è buono.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [44]

Input shaping: il metodo

Dalle considerazioni precedenti si può derivare un metodo per modificare l'ingresso di un sistema risonante, in modo da eliminare le oscillazioni. Sia u(t) l'ingresso del sistema e w(t) il treno di impulsi determinato con le considerazioni precedenti:

$$w(t) = k_1 \delta(t) + k_2 \delta(t - \Delta T/2) + k_3 \delta(t - \Delta T)$$

Sia inoltre h(t) la risposta del sistema di funzione di trasferimento G(s) a w:

$$h(t) = y_1(t) + y_2(t) + y_3(t), \qquad h(t) = 0, t > \Delta T$$

Ricordiamo che con convoluzione di due segnali $u \in h$ si intende l'operazione:

$$h(t) * u(t) = \int_{0}^{t} h(\tau)u(t-\tau)d\tau = \int_{0}^{t} u(\tau)h(t-\tau)d\tau$$

e che la trasformata di Laplace della convoluzione di due segnali è il prodotto delle due trasformate:

$$L[h(t) * u(t)] = H(s)U(s)$$

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [45]

Input shaping: il metodo

Facendo la convoluzione dell'ingresso originario u con la funzione h si ottiene un segnale y privo di oscillazioni a partire dall'istante ΔT . D'altra parte risulta:

 $Y(s) = L[h(t) * u(t)] = H(s)U(s) = G(s)W(s)U(s) = G(s)(k_1 + k_2e^{-s\Delta T/2} + k_3e^{-s\Delta T})U(s)$

Il metodo quindi consiste nel prefiltrare il segnale di ingresso con questo semplice schema a blocchi:

Sono state sviluppate anche versioni adattative del metodo ed estensioni al caso di più modi risonanti.

Applichiamo il metodo dell'input shaping a un servomeccanismo a due masse.

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [47]

Esempio

Simuliamo la risposta, in termini di velocità lato carico. Prevediamo un'incertezza del 10% su ω_n e del 20% su ζ .

Controllo del moto e robotica industriale - Schemi avanzati di controllo per servomeccanismi- P. Rocco [48]