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Introduction

= With these slides we will cover basic elements in robot kinematics.

» We will start from a basic problem of representation of a rigid body in space, and then
proceed through the formal tools used in robotics till the definition of the direct,
inverse and differential kinematics of the manipulator.

» All this material is well covered with better detail in any introductory Robotics course
at BSc level. [t isreviewed here for the sole purpose of making this course self-
contained for students who lack this background.

Some of the picturesin these slides are
taken from the textbook:

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo:
Robotics: Moaelling, Planning and Control,
3rd Ed.

Springer, 2009
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Position and orientation of abody in space

Let us consider arigid body in space:

How can we characterize the position and orientation of the body in space?
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Position and orientation of abody in space

The study of kinematics of mechanical bodies is facilitated if Cartesian frames are introduced.
Each point in space has 3 coordinates (x, y, z) in the Cartesian frame.
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Position and orientation of abody in space

The best thing to do is to consider areference frame and to attach a second frame to
the body.

The problem is now how to characterize the position and orientation of a frame with respect to
another one.



POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco

Position and orientation of abody in space

The representation of the position is just made with the components of the origin of the
body-attached frame with respect to the reference frame:

The three components can be
conveniently gathered in a vector:

1 /
O =|oy
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Position and orientation of abody in space

The representation of the orientation can be
made considering unit length vectors along For example, for the unit vector x':
the axes of the rotated frame and evaluating
their components in the reference frame:

, 1
y
x', _y,x_ z',
O X x' = x’y ’ yl — y,y , 7' = Z,y
x,z _y'z_ Z,Z
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Rotation matrix

We can gather the elements of X', y', z’ in a matrix:

/ I -, T /T /T

P

Xx Y, Zx X X YV X Z X
_ / / o / ! / — T T T
R=[x"y z'|=|Xy ¥V, Zyl=|x"y y'y z'y

/ / / T T T

Xz Y, Zz| X'z y 'z z'z]

This matrix is called rotation matrix of the frame (x', y’, z') with respect to the frame (x, y, z) .

Since the following relations hold:

1T _ 1
1 T

T
’X’=1,

y z 7 =1
Tz’ z'x' =0

y' 1, Z
X’Ty’ =0, y’ 0, X

we have: RTR=1 (R =R™1!) orthogonal matrix
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Elementary rotations

Let us consider arotation by an angle o around z axis:

A ’ Y 4 CoS « —sina 0
2| 2 A x'=|sina|, y' =]|cosa|, z' =|0
0 0 1

The rotation matrix is thus:

cosa —sina 0] Similarly for the

R,(¢) =|sina cosa O rotations around the
0 0 1 other axes.
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Representation of a vector
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Consider now a point P whose coordinates are expressed in two reference frames:

—
e

—
—

The coordinates of the same point in the two frames

are:
Px b X
p=[Py‘, p =P,
Pz

Therefore:

- !/ !/ !/ !/ !/ I __ !/
p=p X +p )y +p 2z =[xy
The rotation matrix thus encodes the transformation which maps
the coordinates expressed in the frame (x’, y’, z") into the

coordinates expressedin frame (X, y, z).

Inverse transformation: p’ = RTp
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Composition of rotation matrices

Let us consider three frames (denoted with 0, 1and 2) with a common origin.
We denote with:

R]  the rotation matrix of frame i with respect to frame j

Thus:
j _ .o —1 _ T
R; = (R}) = (R))
The coordinates of the same point in the three frames can be expressed in different ways:
p' =Rip’ p’=Rip’ p°=RSp’ mmmp R} =RiR;

Rotations can then be obtained by composing partial rotations.
Partial rotation matrices are multiplied from left to right.
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Minimal representation of the orientation

A rotation matrix represents the orientation of a frame with respect to another one by
means of 9 parameters, among which 6 constraints exist.

In a minimal representation the orientation is described by means of 3 independent
parameters.

Possible representations are: oy N H:J\ Pitch
I -3

L
= «

= Euler angles (3 parameters) ~
= roll-pitch-yaw angles (3 parameters)
= axis/angle (4 parameters)

= quaternions (4 parameters)
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ZYZ Euler angles
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With ZYZ Euler angles the sequence is composed as:

1)

Rotation around Z
(angle )

Rotation around Y’
(angle 9)

Rotation around Z”
(angle y)

R=R,(@)R,@)R,» () =

C(pC,gCVJ — S¢S¢
SpCyCy T CypSy

—SY9 Cw

—CQDCQS,’[, — S(pC¢
—SpCySy T CuCy
5198‘/1

CpSy |
S(pSg
C9

cy9 = cos(9)
Sg9 = sin(¥)



POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco 16

Homogeneous representation

How can we express coordinates of point P in
frame O, based on its coordinates in frame 1?

A 1 pO = 0(1) + Rgpl

P % T

Rotation matrix of frame 1w.r.t. frame O

> z Inverse transform:

4 p' = —Rgo? + Ryp°

In order to represent in a compact form these
transformations, it is advisable to introduce a 4-dim vector:

P = [V:Vp] Homogeneous representation

w is a scale factor which is always set to 1in robotics (it is used in computer graphics)
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Homogeneous transformations

We now introduce the homogeneous transformation matrix (size 4x4): A(l’ — [ ;
0

The relationship:
p’ = o} + Rip'
can be expressed, in terms of homogeneous coordinates, as :

50 —

p° = Alp*

AY relates the description (position/orientation) of a point on frame 1 with the
descriptionin frame O.

The inverse transformation is:

<1 _ Als0 _ 10 1 _ |RG —Rgo} A is not orthogonal
p' = AP’ = (AD TP’ A= o )

Composing several transformations: p° = A%AL .. A" 1p™



POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco

Time dependent rotations

Suppose now that rotation of one frame with respect to the
second one changes with time. Let us consider a point P attached

to the rotating frame and expressed with the constant vector p’.
The coordinates of the same point in the stationary frame are:

p(t) = R(t)p’

Take now the derivative with respect to time:
p(t) = R(O)Pp’

How can we express the derivative of a rotation matrix?

-
-

——
——
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Derivative of arotation matrix
Since the rotation matrix is orthogonal, we have:
RORT(t)=1 = RORT®O+RORT()=0
If we define the new matrix:

S(t) = R(RT(¢)

ltturnsoutthat: S(t) + ST(t) = 0 which means that matrix S is skew symmetric.

Matrix S then takes the following form:

Wy 0 —w, wy]
w = lwy] ) S(U)) = | Wy 0 — Wy
Wy —wy Wy 0 |

We conclude that the derivative of a rotation matrixis givenby: R(t) = S(m(t))R(t)
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Relation with the angular velocity vector

The derivative of vector p(t) can thus be expressed as :
p(t) = R®p’ = S(w®))R®)p’ = S(w(®))p(t)

On the other hand the same vector denotes the velocity
of point P in the stationary frame:

p(t) = w(t) X R(t)p’ = w(t) x p(t)

= wistheangular velocity vector of the rotating frame

= symbol x denotes cross product

Thus the skew symmetric matrix S can be interpreted as the operator that
computes the cross product.

N‘ﬁ

——
—

——
——

20
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How does all this relate to the robot?

lo

Rocco

END EFFECTOR

BASE

22
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How does all thisrelate to the robot?

q1
between two links. We call joint variable the coordinate :
associated to such degree of freedom, and then we qn,

Each joint allows for one (and only one) degree of freedom [
introduce the vector of joint variables:

Schematic draws of the joints:

A A (T

ROTATIONAL JOINTS PRISMATIC JOINTS
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Base frame and tool frame

Let us define a frame attached to the base and
a frame attached to the tool.

The tool frame is defined by means of three unit
vectors:

a, (approach): approach direction towards the work-piece
s, (sliding): orthogonal to a,, in the sliding plane of the gripper
n, (normal): orthogonal to both the other ones

p. points to the origin of the tool frame (central point of the gripper).
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Direct kinematics
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The direct kinematics problem is to find position
and orientation of the tool frame w.r.t. the base
frame, as a function of the joint variables.

25
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Direct kinematics

The direct kinematic equation can be expressed through the homogeneous
transformation matrix of the tool frame with respect to the base frame.

T2 (q) = [“Iej (@ si(q) aZ(q) pe (Q)] (homogeneous transformation matrix)
0 1

0 0
Example: planar two-link manipulator

S12 €12 AqC1 + QyCqp

[0

0 —c S as, +a,s
Tg(q) _ . 012 (1)2 151 ; 2512

0 0 0 1
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Direct kinematics

27

To proceed in a systematic way in the computation of the direct kinematics, a frame should be

attached to each link:

frame i-1attached to the link i-1

frame jattached to the link i

link O grounded

é‘\ Zn nis the lastlink

T° (9)

Proceeding iteratively:

T(q) = AY(q1)A3(q2) A% (qn)  T2(@) = TgTR ()T

A (g

It is the homogeneous
transformation matrix of
frame i with respect to
framei—1

It only depends on the joint
coordinate g;

How to place the
reference frames?
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Denavit-Hartenberg convention

It is a convention for the AXIS AXIS AXIS

selection of the frames

attached to each link. %

z; lies along the axis of jointi + 1

JOINT 7 -1 JOINT i JOINT i +1

\ auxiliary frame i’

frame jattached to link i

0; is at the intersection of z; axis with the common normal to axes z; and z;_; we denote with O; the
intersection of this common normal with axis z;_4

x; is aligned with the common normal to axes z; and z;_4, with positive orientation from joint i to jointi + 1

y; completes aright-handed frame
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Denavit-Hartenberg parameters

AXIS AXIS AXIS
In order to define a frame JOINT i—1 JOINT i JOINT i+1

w.r.t. to the preceding one, ﬁ
4 parameters are needed. LH\K:

\ auxiliary frame i’

a; distance of 0; from 0; measured along x;

d; coordinate on z;_, of O;

a; angle around axis x; between axis z;_; and axis z; computed as positive counter clockwise

J; angle around axis z;_; between axis x;_; and axis x; computed as positive counter clockwise

a; and a; are always constant, either 9; or d; is varying

frame jattached to link i

29
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Denavit-Hartenberg method illustrated

Denavit-Hartenberg Reference Frame Layout
Produced by Ethan Tira-Thompson

https://www.youtube.com/watch?v=rA9tm0gTIn8

30
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Homogeneous transformation matrix

How to build the transformation matrix from framei — 1 to frame i:

) Inorderto superimpose frame i — 1 to frame Cg. —Sy. 0 07
i’ we translate the frame along axis z;_; by a . S l l 0 0
. . AT =% Y
length d; rotating by an angle 9; around z;_, : i’ 0 0 1 d
l
0 0 0 14
II) Inorderto superimpose frame i’ to frame i 10 0 a
we translate the frame along axis x; by a g |10 ¢, —S, O
. l ) J
length a;, rotating of an angle a; around x; : Ay = 0 s l C l 0
aj aj
0 O 0 1.
’Cﬁi —Sﬁicai Sﬁisai al-c,gi-
i1,y = ai=1ai’ _ [P0 DiCai TO0a didy;
A; (CIL) - Ai’ A; = 0 Sq: Ca: d;
l l

31
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Joint space and operational space

The joint space is defined by the vector of joint variables:

[ ] q; = 9; (rotating joint)

q; = d; (prismatic joint)

The operational space is the space where the task that the manipulator has to accomplish is
specified. It is defined by the posture x :

_ p (position)
X=1d| o (minimal representation of the orientation)

L m components

Direct kinematic relation: x = k(q)

32
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Three d.o.f. planar manipulator

cg —s; 0 aqcq] c, —s, 0 ayc
Y fxs a; | @ |di |9 s1 c 1 0 als1 52 c 2 0 azs2
T /P A0 = |°1 1 1°1 Al = |°2 2 292
1 la; | 0] 0 |9 1o 0o 1 0 27 lo 0o 1 o0
o 0 0 1| o 0 0 1
7, 2 laz | 0| O |V, R
3 las | 0| 0 |95  a3=|% G 0 @ s =sin@)
red: joint variables o 0 0 1.
€123 —S123 0 @101 +ayc13 +azcqz3
TO = ACALAZ = [S123  Ci23 0 a;s;+azsiz +azsyes
0 0 1 0
_____ L 0 0 0 1 i
. . . . i 7 12 = cos(P; + I;)
We can define the orientation with Dx a1C1 + AC12 T A3C123 515 = sin(d; + 9,)
the angle ¢ formed by the end x = |Py| = k(q) = |a151 + A2S12 + A3S123|  Cizs = cos(r + 0, +05)
. . 9 9 9 S123 = sin(¥; + 9, + 93)
effector (vector x3) with axis x, @ ] 1 TV + U3 |
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A sixd.o.f.robot
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810

- 585 -
X3 X5 1 380 65
X5 X4 A X6
J —p Z
%I—' 6
% y .
! Z
3 Ya
2 Zs5
o
==
X4
)
Py
o
AAZO
} > XO
273 7
448

a; a; di 191'

0.07 | _T1[0352]| 9,
2

0.36 | 0 9,

o |_T 93
2

0 | ™ | 038 |0,
2

0 _z 0 195
2

0 | 0 ]0.065]| 9
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Kinematic model from a user’s perspective

The robot manuals usually do not give the kinematic model in terms of
Denavit-Hartenberg parameters, rather in a simplified way.

Here is an example:

Source: ABB

length of upper arm

length of wrist

| joint5 |
> o —4 > s
- . joint 4 joint 6
offset of jomt 3 —— | | Y
- 7 ® joint 3
A X6
length of lower arth —
offset of joint 2 —
OHIOMEE TS o joint 2

height of foot — ¢ joint 1

A/

Z6

A description like this is specific
to this robot and can be
understood only with an
accompanying sketch.

Denavit-Hartenberg
representation is universal and
can be understood asitis.

35
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Inverse kinematics
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The inverse kinematics problem is to find joint
variables given position and orientation of the tool
frame w.r.t. the base frame.

37
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Inverse kinematics

Given position and orientation of the tool frame, find the corresponding

T q
X q joint variables.

=
=

= The problem may admit no solutions (if position and orientation do not belong to the
workspace of the manipulator)

= The analytical solution (in closed form) may not exist. In this case numerical techniques
are used

= Multiple or an infinite number of solutions might exist

In general the solution is found without a systematic procedure, rather relying on
intuition in manipulating the equations.

38
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Two d.o.f. planar manipulator

y S
Dy = A1, + Ay = a4 cos(V1) + a, cos(I; + 9,)

py - aly + azy = aq Sin(ﬁl) + a, Sin(ﬁl + 192)

Squaring and summing:

p; +py —ai — a3
€2 = 2a,a
1U2 = 192 = Atan2(52; Cz)
Sy = i ’1 - C22
\— 2 solutions
(al + a2C2)px + azszpy
1 = pz + pZ
2 5 R 191 _ AtanZ(Sl,C1) COMPLICATED!
. = (al + a2C2)py — A252Px
1=

ps + 3
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Anthropomorphic manipulator

right/left shoulder

up/down elbow

Eight admissible
configurations exist

Source: ABB

40



Differential kinematics and robot singularities
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Differential kinematics: geometrical Jacobian

Let’s introduce now the linear velocity and the angular velocity of the tool frame (attached to the
tool): vand w.

The goal of differential kinematics is to express these velocities in terms of the joint velocities.

v=p=]Jp(q)q w
w = Jo(q)q v

\% R :
In a compact form: [w] = (I:,] =J(@)q

The (6xn) matrix:  J(q) = _:pgq%
Jo\q

IS called geometrical Jacobian of the manipulator.
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Computation of the geometrical Jacobian

We partition the Jacobian in n columns, each one in turn partitioned in two vectors:

jip1 ipn

Jo Jon|
contribution of joint i to the linear velocity

We have: /

V=P =jp1(@g1 +jp2(QG2 + -+ jpi (@G + -+ jpn(Agn There is a superposition of effects, that
can be used to compute the single
® =jo1(A)q1 +io2(@g2 + -+ joi (@G + -+ + jon(A)Gn contributions

\

contribution of joint i to the angular velocity
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Computation of the geometrical Jacobian

Angular velocity

Joint i prismatic: a prismatic joint does not give any contribution of angular velocity.
qijoi =0 = Joi =0
Joint i rotational: a rotational joint gives a contribution of angular velocity directed as

the axis of the joint

In making these considerations, we consider the
Joints downward in the kinematic chain as
«frozen»

QiJoi = ViZi-1 =  Joi =Zi—1

44
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45

Computation of the geometrical Jacobian

Linear velocity

Joint i prismatic: a prismatic joint gives a contribution of linear velocity directed as the axis of
the joint

Qijpi = diZi—y = Jpi =Zj—1

Joint i rotational: a rotational joint gives a contribution of
linear velocity that can be obtained with a cross product

Qijpi = 0iZi—1 XTi_14 =

=9;2;_1 X (p — Pi_1)
U

jpi = Zi—1 X (P — Pi-1)
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Computation of the geometrical Jacobian

We can then compute the geometrical Jacobian column by column:

( Zi_
l 101 joint i prismatic

]Pl] _
Joi [Zi—l X (p— Pi-1) joint i rotational
L Zj_q

The matrices needed to compute these vectors can be determined through direct kinematics
relations:

Zi1 = R(1)(CI1) ---Rii:%(CIi—l)Zo 0 8 p
" 0 1 _ where: Zy = [0]:50 = 0 lﬁ — ll]
P =Ai(q1) - Ay (qn)Po 1 1

Pi-1 = Ag(%) ---Aii:21(CIi—1)ﬁ0 \\

(homogeneous

coordinates)
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Computation of the geometrical Jacobian: example

Tg

by

7
" ](q)‘[ZOX(EO Po) zl><(£1 P.) ZZX(;)Z P2)

a1C1
Po—[‘ P1 = a151] P2 =

a1C1 + a2612 + a3C123 O
a,Sq + a,S1, + azS173 Zo =2Z1 = Z, = |0

0

a1S1 + ayS17
0

aicy + a, C12‘

p:

[—A151 — A2S12 — A35123
a1C1 + AxC1 + A3Cq23
_ 0
N 0
0
i 1

—0a2S12 — A35123 —0A351237
A,C1p + A3C123 a3C123 note:
0 0

0 0 a;bs — azb,
O O aXb - a3b1 _a1b3
1 1

a b, —a,by

47
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Analytical Jacobian

Let’s go back to the direct kinematic equation of a manipulator:

v

where ¢ is a minimal representation of the orientation. Differentiating w.r.t. time, we obtain:

. 0k(q) ,

X=""5q 47 Ja(a)q
On the other hand:
= [l?] _ l(ap(q)/aq)QI _ [lp(q) ;
o] |@0d(@/oq| [Jo(a)
Matrix: Jp(a) is called analytical Jacobian of the manipulator.

Ja (q) - lcb (q)

48
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Analytical vs. geometrical Jacobian

The link between the angular velocity w and the derivative of vector ¢ expressing the
orientation is the following one:

o =T(d)d

where T is a matrix that depends on the representation of the orientation:

0 —S(p C¢Sl9
T(p) =|0 ¢¢ S¢So| (fortheZYZEulerangles)
1 0 €y

Let us thus express the velocity (linear and angular) of the tool frame in terms
of the derivativesof pand ¢ :

[L]=[£]=[T(i) d)]:[(', ol [g]=TA(¢>x=TA(¢>JAq where: Ti(®) = g 1]

The relation between analytical and geometrical Jacobian follows: | J = T,(¢)]4
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Kinematic singularities

The equation defining the geometrical Jacobian is:

o] =] =1@a

The values of q for which matrix J is rank-deficient are called kinematic singularities. At a
kinematic singularity we have:

1. Loss of mobility (it is not possible to impose arbitrary motion laws)
2. Possibility of infinite solutions to the kinematic inversion problem
3. High velocities in joint space (around the singularity)

The singularities may happen:

1.  Atthe borders of the manipulator work-space
2. Inside the manipulator work-space

The latter are more problematic, since they can be incurred with trajectories planned
in the operational space.

50
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Kinematic singularities: example

For a two-link manipulator the Jacobian is:

J = —Qa151 — 435712 —a2512]
a1€1 + axcqy a,C12

We can compute singularities: These are singularities at the borders of the workspace.

det(]) — a1a282 — O L= 192 — {701_

A /
yD

In these configurations the two columns ] = —(ay +az)s;  —azs;
of the Jacobian are not independent. (a1 +az)e;  ao
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Kinematic singularities of a complete manipulator

Arm singularity

Singularity at the intersection of the

wrist center and axis 1
C

\ — Rotation center of axis 1

N

Z?Ja.se

Aj\
- Xb(rse

Axis 6 parallel
to axis 4

e ) Source: ABB
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Consequences of kinematic singularities on robot motion

Singularite de poignet /

Wrist simgularity

53
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Inversion of the differential kinematics

The differential kinematics is linear for a certain value of q :

X =J4(9)q

Given a vector of desired coordinates in the operational space x,; and an initial condition on q we
might solve the kinematic inversion problem by inverting the differential kinematics and then

integrating. If the Jacobian is square (n = 6):
t
=1 @k = 4= [ a©do+q()
0

However, using this expression directly, drifts of the solution may occur.
The error in the operational space made by the kinematic inversion algorithm is then introduced:

e =X —X

54
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Inverse of the Jacobian

If we adopt the following dependence of q from e:

Mathematically, this corresponds to

N | : lve the inverse kinematics problem
= Xq + Ke SO P
9 ]A (Q)( d ) through a Gauss-Newton iterative
method.

we obtain: Proof of convergence is trivial as:
. 2+ Ke =0
e+Ke=0 °TRe
and the X,
diagram:
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Transpose of the Jacobian

If we adopt the following (simpler) dependence:

Mathematically, this corresponds to
solve the inverse kinematics problem

~ — 1T
q=1Ja (Q) Ke through a gradient descent iterative
method.

: Proof of convergence can be obtained
we obtain the through a Lyapunov argument.
diagram:
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