
22.09.2025 |  Paolo Rocco

Review of robot 
kinematics

Control of industrial robots



Contents

POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco 2

1. Position and orientation of a body in space

2. Direct kinematics and the Denavit-Hartenberg method

3. Inverse kinematics

4. Differential kinematics and robot singularities



Position and orientation of a body in space

01

3



Introduction
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With these slides we will cover basic elements in robot kinematics.

We will start from a basic problem of representation of a rigid body in space, and then 
proceed through the formal tools used in robotics till the definition of the direct, 
inverse and differential kinematics of the manipulator.

 All this material is well covered with better detail in any introductory Robotics course 
at BSc level. It is reviewed here for the sole purpose of making this course self-
contained for students who lack this background.

Some of the pictures in these slides are 
taken from the textbook:
B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: 
Robotics: Modelling, Planning and Control, 
3rd Ed. 
Springer, 2009
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Let us consider a rigid body in space:

How can we characterize the position and orientation of the body in space?



Position and orientation of a body in space
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The study of kinematics of mechanical bodies is facilitated if Cartesian frames are introduced.
Each point in space has 3 coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) in the Cartesian frame.



Position and orientation of a body in space
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The best thing to do is to consider a reference frame and to attach a second frame to 
the body. 

The problem is now how to characterize the position and orientation of a frame with respect to 
another one.
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The representation of the position is just made with the components of the origin of the 
body-attached frame with respect to the reference frame: 

The three components can be 
conveniently gathered in a vector:

𝐎𝐎𝐎 =
𝑜𝑜′𝑥𝑥
𝑜𝑜′𝑦𝑦
𝑜𝑜′𝑧𝑧
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Position and orientation of a body in space
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The representation of the orientation can be 
made considering unit length vectors along 
the axes of the rotated frame and evaluating 
their components in the reference frame: 

We obtain three vectors:

𝐱𝐱′ =
𝑥𝑥′𝑥𝑥
𝑥𝑥′𝑦𝑦
𝑥𝑥′𝑧𝑧

, 𝐲𝐲′ =
𝑦𝑦′𝑥𝑥
𝑦𝑦′𝑦𝑦
𝑦𝑦′𝑧𝑧

, 𝐳𝐳′ =
𝑧𝑧′𝑥𝑥
𝑧𝑧′𝑦𝑦
𝑧𝑧′𝑧𝑧

y
z

xO

x’

y’z’

O’

y
z

xO’

x’

x’x

x’y
x’z

For example, for the unit vector 𝑥𝑥′:



Rotation matrix
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We can gather the elements of 𝐱𝐱′, 𝐲𝐲′, 𝐳𝐳′ in a matrix:

This matrix is called rotation matrix of the frame (𝐱𝐱′, 𝐲𝐲′, 𝐳𝐳′) with respect to the frame (𝐱𝐱, 𝐲𝐲, 𝐳𝐳) .
Since the following relations hold:

𝐑𝐑 = 𝐱𝐱′ 𝐲𝐲′ 𝐳𝐳′ =
𝑥𝑥′𝑥𝑥 𝑦𝑦′𝑥𝑥 𝑧𝑧′𝑥𝑥
𝑥𝑥′𝑦𝑦 𝑦𝑦′𝑦𝑦 𝑧𝑧′𝑦𝑦
𝑥𝑥′𝑧𝑧 𝑦𝑦′𝑧𝑧 𝑧𝑧′𝑧𝑧

=
𝐱𝐱′𝑇𝑇𝐱𝐱 𝐲𝐲′𝑇𝑇𝐱𝐱 𝐳𝐳′𝑇𝑇𝐱𝐱
𝐱𝐱′𝑇𝑇𝐲𝐲 𝐲𝐲′𝑇𝑇𝐲𝐲 𝐳𝐳′𝑇𝑇𝐲𝐲
𝐱𝐱′𝑇𝑇𝐳𝐳 𝐲𝐲′𝑇𝑇𝐳𝐳 𝐳𝐳′𝑇𝑇𝐳𝐳

𝐱𝐱′𝑇𝑇𝐱𝐱′ = 1, 𝐲𝐲′𝑇𝑇𝐲𝐲′ = 1, 𝐳𝐳′𝑇𝑇𝐳𝐳′ = 1
𝐱𝐱′𝑇𝑇𝐲𝐲′ = 0, 𝐲𝐲′𝑇𝑇𝐳𝐳′ = 0, 𝐳𝐳′𝑇𝑇𝐱𝐱′ = 0

we have: 𝐑𝐑𝑇𝑇𝐑𝐑 = 𝐈𝐈 𝐑𝐑𝑇𝑇 = 𝐑𝐑−1 orthogonal matrix



Elementary rotations
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Let us consider a rotation by an angle α around 𝒛𝒛 axis:

The rotation matrix is thus:

Similarly for the 
rotations around the 
other axes.

𝐱𝐱′ =
cos𝛼𝛼
sin𝛼𝛼

0
, 𝐲𝐲′ =

− sin𝛼𝛼
cos𝛼𝛼

0
, 𝐳𝐳′ =

0
0
1

𝐑𝐑𝑧𝑧 𝛼𝛼 =
cos𝛼𝛼 − sin𝛼𝛼 0
sin𝛼𝛼 cos𝛼𝛼 0

0 0 1

y

x
O

x’

y’

α

α



Representation of a vector

POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco 12

Consider now a point P whose coordinates are expressed in two reference frames: 

The coordinates of the same point in the two frames 
are:

𝐩𝐩 =
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧

, 𝐩𝐩′ =
𝑝𝑝′𝑥𝑥
𝑝𝑝′𝑦𝑦
𝑝𝑝′𝑧𝑧

Therefore:

𝐩𝐩 = 𝑝𝑝′𝑥𝑥𝐱𝐱
′ + 𝑝𝑝′𝑦𝑦𝐲𝐲

′ + 𝑝𝑝′𝑧𝑧𝐳𝐳
′ = 𝐱𝐱′ 𝐲𝐲′ 𝐳𝐳′ 𝐩𝐩′ = 𝐑𝐑𝐩𝐩′

The rotation matrix thus encodes the transformation which maps 
the coordinates expressed in the frame (𝐱𝐱′, 𝐲𝐲′, 𝐳𝐳′) into the 
coordinates expressed in frame (𝐱𝐱, 𝐲𝐲, 𝐳𝐳).

Inverse transformation: 𝐩𝐩′ = 𝐑𝐑𝑇𝑇𝐩𝐩



Composition of rotation matrices
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𝐑𝐑𝑖𝑖
𝑗𝑗

Let us consider three frames (denoted with 0, 1 and 2) with a common origin.
We denote with:

the rotation matrix of frame 𝑖𝑖 with respect to frame 𝑗𝑗

Thus:

𝐑𝐑𝑖𝑖
𝑗𝑗 = 𝐑𝐑𝑗𝑗𝑖𝑖

−1
= 𝐑𝐑𝑗𝑗𝑖𝑖

𝑇𝑇

The coordinates of the same point in the three frames can be expressed in different ways:

𝐩𝐩1 = 𝐑𝐑21𝐩𝐩2 𝐩𝐩0 = 𝐑𝐑10𝐩𝐩1 𝐩𝐩0 = 𝐑𝐑20𝐩𝐩2

Rotations can then be obtained by composing partial rotations.
Partial rotation matrices are multiplied from left to right.

𝐑𝐑20 = 𝐑𝐑10𝐑𝐑21



Minimal representation of the orientation
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A rotation matrix represents the orientation of a frame with respect to another one by 
means of 9 parameters, among which 6 constraints exist.

In a minimal representation the orientation is described by means of 3 independent 
parameters.

Possible representations are:

 Euler angles (3 parameters)
 roll-pitch-yaw angles (3 parameters)
 axis/angle (4 parameters)
 quaternions (4 parameters)



ZYZ Euler angles
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With ZYZ Euler angles the sequence is composed as:

I) Rotation around Z
(angle ϕ)

II) Rotation around Y’
(angle ϑ)

III) Rotation around Z’’
(angle ψ)

𝑐𝑐𝜗𝜗 = cos 𝜗𝜗
𝑠𝑠𝜗𝜗 = sin 𝜗𝜗𝐑𝐑 = 𝐑𝐑𝑧𝑧 𝜑𝜑 𝐑𝐑𝑦𝑦′ 𝜗𝜗 𝐑𝐑𝑧𝑧″ 𝜓𝜓 =

𝑐𝑐𝜑𝜑𝑐𝑐𝜗𝜗𝑐𝑐𝜓𝜓 − 𝑠𝑠𝜑𝜑𝑠𝑠𝜓𝜓 −𝑐𝑐𝜑𝜑𝑐𝑐𝜗𝜗𝑠𝑠𝜓𝜓 − 𝑠𝑠𝜑𝜑𝑐𝑐𝜓𝜓 𝑐𝑐𝜑𝜑𝑠𝑠𝜗𝜗
𝑠𝑠𝜑𝜑𝑐𝑐𝜗𝜗𝑐𝑐𝜓𝜓 + 𝑐𝑐𝜑𝜑𝑠𝑠𝜓𝜓 −𝑠𝑠𝜑𝜑𝑐𝑐𝜗𝜗𝑠𝑠𝜓𝜓 + 𝑐𝑐𝜑𝜑𝑐𝑐𝜓𝜓 𝑠𝑠𝜑𝜑𝑠𝑠𝜗𝜗

−𝑠𝑠𝜗𝜗𝑐𝑐𝜓𝜓 𝑠𝑠𝜗𝜗𝑠𝑠𝜓𝜓 𝑐𝑐𝜗𝜗



Homogeneous representation
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How can we express coordinates of point P in 
frame 0, based on its coordinates in frame 1?

Homogeneous representation

Rotation matrix of frame 1 w.r.t. frame 0

In order to represent in a compact form these 
transformations, it is advisable to introduce a 4-dim vector:

�𝐩𝐩 = 𝑤𝑤𝑤𝑤
𝑤𝑤

𝑤𝑤 is a scale factor which is always set to 1 in robotics (it is used in computer graphics)

Inverse transform:

𝐩𝐩0 = 𝐨𝐨10 + 𝐑𝐑10𝐩𝐩1

𝐩𝐩1 = −𝐑𝐑01𝐨𝐨10 + 𝐑𝐑01𝐩𝐩0



Homogeneous transformations
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𝐀𝐀10 = 𝐑𝐑10 𝐨𝐨10

0𝑇𝑇 1
We now introduce the homogeneous transformation matrix (size 4×4):

The relationship:

can be expressed, in terms of homogeneous coordinates, as :

�𝐩𝐩0 = 𝐀𝐀10�𝐩𝐩1

The inverse transformation is:

�𝐩𝐩1 = 𝐀𝐀01 �𝐩𝐩0 = (𝐀𝐀10)−1�𝐩𝐩0 𝐀𝐀01 = 𝐑𝐑01 −𝐑𝐑01𝐨𝐨10

0𝑇𝑇 1

Composing several transformations: �𝐩𝐩0 = 𝐀𝐀10𝐀𝐀21 …𝐀𝐀𝑛𝑛𝑛𝑛−1�𝐩𝐩𝑛𝑛

𝐀𝐀10 relates the description (position/orientation) of a point on frame 1 with the 
description in frame 0.

𝐀𝐀 is not orthogonal

𝐩𝐩0 = 𝐨𝐨10 + 𝐑𝐑10𝐩𝐩1



Time dependent rotations
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Suppose now that rotation of one frame with respect to the 
second one changes with time. Let us consider a point P attached 
to the rotating frame and expressed with the constant vector 𝐩𝐩′.
The coordinates of the same point in the stationary frame are:

𝐩𝐩 𝑡𝑡 = 𝐑𝐑 𝑡𝑡 𝐩𝐩′

Take now the derivative with respect to time:

𝐩̇𝐩 𝑡𝑡 = 𝐑̇𝐑 𝑡𝑡 𝐩𝐩′

How can we express the derivative of a rotation matrix?



Derivative of a rotation matrix
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Since the rotation matrix is orthogonal, we have:

𝐑𝐑 𝑡𝑡 𝐑𝐑𝑇𝑇 𝑡𝑡 = 𝐈𝐈 ⇒ 𝐑̇𝐑 𝑡𝑡 𝐑𝐑𝑇𝑇 𝑡𝑡 + 𝐑𝐑 𝑡𝑡 𝐑̇𝐑𝑇𝑇 𝑡𝑡 = 𝟎𝟎

We conclude that the derivative of a rotation matrix is given by:

If we define the new matrix:

𝐒𝐒 𝑡𝑡 = 𝐑̇𝐑 𝑡𝑡 𝐑𝐑𝑇𝑇 𝑡𝑡

It turns out that: 𝐒𝐒 𝑡𝑡 + 𝐒𝐒𝑇𝑇 𝑡𝑡 = 𝟎𝟎 which means that matrix 𝐒𝐒 is skew symmetric.

𝐑̇𝐑 𝑡𝑡 = 𝐒𝐒 ω 𝐭𝐭 𝐑𝐑 𝑡𝑡

ω =
𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧

, 𝐒𝐒 ω =
0 −𝜔𝜔𝑧𝑧 𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧 0 −𝜔𝜔𝑥𝑥
−𝜔𝜔𝑦𝑦 𝜔𝜔𝑥𝑥 0

Matrix 𝐒𝐒 then takes the following form:



Relation with the angular velocity vector
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The derivative of vector 𝐩𝐩 𝑡𝑡 can thus be expressed as :

On the other hand the same vector denotes the velocity 
of point P in the stationary frame:

𝐩̇𝐩 𝑡𝑡 = 𝐑̇𝐑 𝑡𝑡 𝐩𝐩′ = 𝐒𝐒 ω 𝐭𝐭 𝐑𝐑 𝑡𝑡 𝐩𝐩′ = 𝐒𝐒 ω 𝐭𝐭 𝐩𝐩 𝑡𝑡

𝐩̇𝐩 𝑡𝑡 = ω 𝑡𝑡 × 𝐑𝐑 𝑡𝑡 𝐩𝐩′ = ω 𝑡𝑡 × 𝐩𝐩 𝑡𝑡

Thus the skew symmetric matrix 𝐒𝐒 can be interpreted as the operator that 
computes the cross product.

 ω is the angular velocity vector of the rotating frame

 symbol × denotes cross product



Direct kinematics and the Denavit-Hartenberg method
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How does all this relate to the robot?
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BASE

END EFFECTOR

JOINTS



How does all this relate to the robot?
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ROTATIONAL JOINTS PRISMATIC JOINTS

Each joint allows for one (and only one) degree of freedom
between two links. We call joint variable the coordinate 
associated to such degree of freedom, and then we 
introduce the vector of joint variables:

Schematic draws of the joints:

𝐪𝐪 =
𝑞𝑞1
⋮
𝑞𝑞𝑛𝑛



Base frame and tool frame
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Let us define a frame attached to the base and 
a frame attached to the tool. 

The tool frame is defined by means of three unit 
vectors:

𝐚𝐚𝑒𝑒 (approach): approach direction towards the work-piece
𝐬𝐬𝑒𝑒 (sliding): orthogonal to 𝐚𝐚𝑒𝑒 in the sliding plane of the gripper
𝐧𝐧𝑒𝑒 (normal): orthogonal to both the other ones

𝐩𝐩𝑒𝑒 points to the origin of the tool frame (central point of the gripper).



Direct kinematics
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The direct kinematics problem is to find  position 
and orientation of the tool frame w.r.t. the base 
frame, as a function of the joint variables.?






Direct kinematics
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The direct kinematic equation can be expressed through the homogeneous 
transformation matrix of the tool frame with respect to the base frame.

Example: planar two-link manipulator

(homogeneous transformation matrix)

𝐓𝐓𝑒𝑒𝑏𝑏 𝐪𝐪 =

0 𝑠𝑠12 𝑐𝑐12 𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐12
0 −𝑐𝑐12 𝑠𝑠12 𝑎𝑎1𝑠𝑠1 + 𝑎𝑎2𝑠𝑠12
1 0 0 0
0 0 0 1

𝐓𝐓𝑒𝑒𝑏𝑏 𝐪𝐪 = 𝐧𝐧𝑒𝑒𝑏𝑏 𝐪𝐪 𝐬𝐬𝑒𝑒𝑏𝑏 𝐪𝐪 𝐚𝐚𝑒𝑒𝑏𝑏 𝐪𝐪 𝐩𝐩𝑒𝑒𝑏𝑏 𝐪𝐪
0 0 0 1



Direct kinematics
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To proceed in a systematic way in the computation of the direct kinematics, a frame should be 
attached to each link:

𝐓𝐓𝑛𝑛0 𝐪𝐪 = 𝐀𝐀10 𝑞𝑞1 𝐀𝐀21 𝑞𝑞2 …𝐀𝐀𝑛𝑛𝑛𝑛−1 𝑞𝑞𝑛𝑛

link 0 grounded

n is the last link

Proceeding iteratively:

𝐓𝐓𝑒𝑒𝑏𝑏 𝐪𝐪 = 𝐓𝐓0𝑏𝑏𝐓𝐓𝑛𝑛0 𝐪𝐪 𝐓𝐓𝑒𝑒𝑛𝑛

frame i-1 attached to the link i-1

frame i attached to the link i

𝐀𝐀𝑖𝑖𝑖𝑖−1 𝑞𝑞𝑖𝑖
 It is the homogeneous 

transformation matrix of 
frame 𝑖𝑖 with respect to 
frame 𝑖𝑖 − 1

 It only depends on the joint 
coordinate 𝑞𝑞𝑖𝑖

 How to place the 
reference frames?



Denavit-Hartenberg convention
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 𝑧𝑧𝑖𝑖 lies along the axis of joint 𝑖𝑖 + 1
 𝑂𝑂𝑖𝑖 is at the intersection of 𝑧𝑧𝑖𝑖 axis with the common normal to axes 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖−1; we denote with 𝑂𝑂𝑖𝑖′ the 

intersection of this common normal with axis 𝑧𝑧𝑖𝑖−1
 𝑥𝑥𝑖𝑖 is aligned with the common normal to axes 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖−1, with positive orientation from joint 𝑖𝑖 to joint 𝑖𝑖 + 1
 𝑦𝑦𝑖𝑖 completes a right-handed frame

It is a convention for the 
selection of the frames 
attached to each link.

frame i attached to link i
auxiliary frame i'

frame i-1 attached to link i-1



Denavit-Hartenberg parameters
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In order to define a frame 
w.r.t. to the preceding one, 
4 parameters are needed.

 𝑎𝑎𝑖𝑖 distance of 𝑂𝑂𝑖𝑖 from 𝑂𝑂𝑖𝑖′ measured along 𝑥𝑥𝑖𝑖
 𝑑𝑑𝑖𝑖 coordinate on 𝑧𝑧𝑖𝑖−1 of 𝑂𝑂𝑖𝑖′

 𝛼𝛼𝑖𝑖 angle around axis 𝑥𝑥𝑖𝑖 between axis 𝑧𝑧𝑖𝑖−1 and axis 𝑧𝑧𝑖𝑖 computed as positive counter clockwise 
 𝜗𝜗𝑖𝑖 angle around axis 𝑧𝑧𝑖𝑖−1 between axis 𝑥𝑥𝑖𝑖−1 and axis 𝑥𝑥𝑖𝑖 computed as positive counter clockwise 

𝑎𝑎𝑖𝑖 and 𝛼𝛼𝑖𝑖 are always constant, either 𝜗𝜗𝑖𝑖 or 𝑑𝑑𝑖𝑖 is varying

frame i attached to link i
auxiliary frame i'

frame i-1 attached to link i-1



Denavit-Hartenberg method illustrated
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https://www.youtube.com/watch?v=rA9tm0gTln8

https://www.youtube.com/watch?v=rA9tm0gTln8


Homogeneous transformation matrix
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How to build the transformation matrix from frame 𝑖𝑖 − 1 to frame 𝑖𝑖:

I) In order to superimpose frame 𝑖𝑖 − 1 to frame 
𝑖𝑖′ we translate the frame along axis 𝑧𝑧𝑖𝑖−1 by a 
length 𝑑𝑑𝑖𝑖 rotating by an angle 𝜗𝜗𝑖𝑖 around 𝑧𝑧𝑖𝑖−1 :

II) In order to superimpose frame 𝑖𝑖′ to frame 𝑖𝑖
we translate the frame along axis 𝑥𝑥𝑖𝑖′ by a 
length 𝑎𝑎𝑖𝑖, rotating of an angle 𝛼𝛼𝑖𝑖 around 𝑥𝑥𝑖𝑖′ :

𝐀𝐀𝑖𝑖𝑖𝑖−1 𝑞𝑞𝑖𝑖 = 𝐀𝐀𝑖𝑖′
𝑖𝑖−1𝐀𝐀𝑖𝑖𝑖𝑖

′
=

𝑐𝑐𝜗𝜗𝑖𝑖 −𝑠𝑠𝜗𝜗𝑖𝑖𝑐𝑐𝛼𝛼𝑖𝑖 𝑠𝑠𝜗𝜗𝑖𝑖𝑠𝑠𝛼𝛼𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝜗𝜗𝑖𝑖
𝑠𝑠𝜗𝜗𝑖𝑖 𝑐𝑐𝜗𝜗𝑖𝑖𝑐𝑐𝛼𝛼𝑖𝑖 −𝑐𝑐𝜗𝜗𝑖𝑖𝑠𝑠𝛼𝛼𝑖𝑖 𝑎𝑎𝑖𝑖𝑠𝑠𝜗𝜗𝑖𝑖
0 𝑠𝑠𝛼𝛼𝑖𝑖 𝑐𝑐𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖
0 0 0 1

𝐀𝐀𝑖𝑖′
𝑖𝑖−1 =

𝑐𝑐𝜗𝜗𝑖𝑖 −𝑠𝑠𝜗𝜗𝑖𝑖 0 0
𝑠𝑠𝜗𝜗𝑖𝑖 𝑐𝑐𝜗𝜗𝑖𝑖 0 0
0 0 1 𝑑𝑑𝑖𝑖
0 0 0 1

𝐀𝐀𝑖𝑖𝑖𝑖
′

=

1 0 0 𝑎𝑎𝑖𝑖
0 𝑐𝑐𝛼𝛼𝑖𝑖 −𝑠𝑠𝛼𝛼𝑖𝑖 0
0 𝑠𝑠𝛼𝛼𝑖𝑖 𝑐𝑐𝛼𝛼𝑖𝑖 0
0 0 0 1



Joint space and operational space
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The joint space is defined by the vector of joint variables:

Direct kinematic relation:

𝐪𝐪 =
𝑞𝑞1
⋮
𝑞𝑞𝑛𝑛

𝑞𝑞𝑖𝑖 = 𝜗𝜗𝑖𝑖 (rotating joint)

𝑞𝑞𝑖𝑖 = 𝑑𝑑𝑖𝑖 (prismatic joint)

The operational space is the space where the task that the manipulator has to accomplish is 
specified. It is defined by the posture 𝐱𝐱 :

𝐩𝐩 (position)
ϕ (minimal representation of the orientation)

𝑚𝑚 components

𝐱𝐱 = 𝐤𝐤 𝐪𝐪

𝐱𝐱 =
𝐩𝐩
ϕ



Three d.o.f. planar manipulator
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We can define the orientation with 
the angle 𝜑𝜑 formed by the end 
effector (vector 𝑥𝑥3) with axis 𝑥𝑥0

𝐱𝐱 =
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝜑𝜑

= 𝐤𝐤 𝐪𝐪 =
𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐12 + 𝑎𝑎3𝑐𝑐123
𝑎𝑎1𝑠𝑠1 + 𝑎𝑎2𝑠𝑠12 + 𝑎𝑎3𝑠𝑠123

𝜗𝜗1 + 𝜗𝜗2 + 𝜗𝜗3

𝐓𝐓30 = 𝐀𝐀10𝐀𝐀21𝐀𝐀32 =

𝑐𝑐123 −𝑠𝑠123 0 𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐12 + 𝑎𝑎3𝑐𝑐123
𝑠𝑠123 𝑐𝑐123 0 𝑎𝑎1𝑠𝑠1 + 𝑎𝑎2𝑠𝑠12 + 𝑎𝑎3𝑠𝑠123

0 0 1 0
0 0 0 1

𝑎𝑎𝑖𝑖 𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖 𝜗𝜗𝑖𝑖
1 𝑎𝑎1 0 0 𝜗𝜗1
2 𝑎𝑎2 0 0 𝜗𝜗2
3 𝑎𝑎3 0 0 𝜗𝜗3

𝐀𝐀10 =

𝑐𝑐1 −𝑠𝑠1 0 𝑎𝑎1𝑐𝑐1
𝑠𝑠1 𝑐𝑐1 0 𝑎𝑎1𝑠𝑠1
0 0 1 0
0 0 0 1

𝐀𝐀21 =

𝑐𝑐2 −𝑠𝑠2 0 𝑎𝑎2𝑐𝑐2
𝑠𝑠2 𝑐𝑐2 0 𝑎𝑎2𝑠𝑠2
0 0 1 0
0 0 0 1

𝐀𝐀32 =

𝑐𝑐3 −𝑠𝑠3 0 𝑎𝑎3𝑐𝑐3
𝑠𝑠3 𝑐𝑐3 0 𝑎𝑎3𝑠𝑠3
0 0 1 0
0 0 0 1

𝑐𝑐𝑖𝑖 = cos 𝜗𝜗𝑖𝑖
𝑠𝑠𝑖𝑖 = sin 𝜗𝜗𝑖𝑖

𝑐𝑐12 = cos 𝜗𝜗1 + 𝜗𝜗2
𝑠𝑠12 = sin 𝜗𝜗1 + 𝜗𝜗2
𝑐𝑐123 = cos 𝜗𝜗1 + 𝜗𝜗2 + 𝜗𝜗3
𝑠𝑠123 = sin 𝜗𝜗1 + 𝜗𝜗2 + 𝜗𝜗3

red: joint variables



A six d.o.f. robot
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x0
z0

y1

x1

x3

y2

x4

y4

x6

z6

x2

z3

x5

z5

𝑎𝑎𝑖𝑖 𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖 𝜗𝜗𝑖𝑖
1 0.07 −

𝜋𝜋
2

0.352 𝜗𝜗1

2 0.36 0 0 𝜗𝜗2
3 0 −

𝜋𝜋
2

0 𝜗𝜗3

4 0 𝜋𝜋
2

0.38 𝜗𝜗4

5 0 −
𝜋𝜋
2

0 𝜗𝜗5

6 0 0 0.065 𝜗𝜗6



Kinematic model from a user’s perspective
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The robot manuals usually do not give the kinematic model in terms of 
Denavit-Hartenberg parameters, rather in a simplified way.

Here is an example:

Source: ABB

A description like this is specific 
to this robot and can be 
understood only with an 
accompanying sketch.

Denavit-Hartenberg
representation is universal and 
can be understood as it is.



Inverse kinematics
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Inverse kinematics
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The inverse kinematics problem is to find joint 
variables given position and orientation of the tool 
frame w.r.t. the base frame.

?



?

?



Inverse kinematics
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Given position and orientation of the tool frame, find the corresponding 
joint variables.

𝐓𝐓 ⇒ 𝐪𝐪
𝐱𝐱 ⇒ 𝐪𝐪

 The problem may admit no solutions (if position and orientation do not belong to the 
workspace of the manipulator) 

 The analytical solution (in closed form) may not exist. In this case numerical techniques 
are used

 Multiple or an infinite number of solutions might exist

In general the solution is found without a systematic procedure, rather relying on 
intuition in manipulating the equations. 



Two d.o.f. planar manipulator 
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𝑝𝑝𝑥𝑥 = 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥 = 𝑎𝑎1 cos 𝜗𝜗1 + 𝑎𝑎2 cos 𝜗𝜗1 + 𝜗𝜗2
𝑝𝑝𝑦𝑦 = 𝑎𝑎1𝑦𝑦 + 𝑎𝑎2𝑦𝑦 = 𝑎𝑎1 sin 𝜗𝜗1 + 𝑎𝑎2 sin 𝜗𝜗1 + 𝜗𝜗2

X

Y

ϑ1

ϑ2

a1

a2

a1x a2x

a1y

a2y

P

COMPLICATED!

Squaring and summing:

𝑐𝑐2 =
𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2 − 𝑎𝑎12 − 𝑎𝑎22

2𝑎𝑎1𝑎𝑎2

𝑠𝑠2 = ± 1 − 𝑐𝑐22
⇒ 𝜗𝜗2 = Atan2 𝑠𝑠2, 𝑐𝑐2

2 solutions

𝑐𝑐1 =
𝑎𝑎1 + 𝑎𝑎2𝑐𝑐2 𝑝𝑝𝑥𝑥 + 𝑎𝑎2𝑠𝑠2𝑝𝑝𝑦𝑦

𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2

𝑠𝑠1 =
𝑎𝑎1 + 𝑎𝑎2𝑐𝑐2 𝑝𝑝𝑦𝑦 − 𝑎𝑎2𝑠𝑠2𝑝𝑝𝑥𝑥

𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2

⇒ 𝜗𝜗1 = Atan2 𝑠𝑠1, 𝑐𝑐1



Anthropomorphic manipulator

POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco 40

Eight admissible 
configurations exist

right/left shoulder up/down elbow

up/down wrist Source: ABB



Differential kinematics and robot singularities
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Differential kinematics: geometrical Jacobian
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Let’s introduce now the linear velocity and the angular velocity of the tool frame (attached to the 
tool): 𝐯𝐯 and ω.

The goal of differential kinematics is to express these velocities in terms of the joint velocities.

𝐯𝐯 = 𝐩̇𝐩 = 𝐉𝐉𝑃𝑃 𝐪𝐪 𝐪̇𝐪
ω = 𝐉𝐉𝑂𝑂 𝐪𝐪 𝐪̇𝐪

In a compact form:

The (6×n) matrix: 𝐉𝐉 𝐪𝐪 = 𝐉𝐉𝑃𝑃 𝐪𝐪
𝐉𝐉𝑂𝑂 𝐪𝐪

is called geometrical Jacobian of the manipulator.

P

v
ω

𝐯𝐯
𝛚𝛚 = 𝐩̇𝐩

𝛚𝛚 = 𝐉𝐉 𝐪𝐪 𝐪̇𝐪



Computation of the geometrical Jacobian
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We partition the Jacobian in 𝑛𝑛 columns, each one in turn partitioned in two vectors:

𝐉𝐉 =
𝐣𝐣𝑃𝑃𝑃 𝐣𝐣𝑃𝑃𝑃𝑃

⋯
𝐣𝐣𝑂𝑂𝑂 𝐣𝐣𝑂𝑂𝑂𝑂

contribution of joint 𝑖𝑖 to the linear velocity

contribution of joint 𝑖𝑖 to the angular velocity

We have:

𝐯𝐯 = 𝐩̇𝐩 = 𝐣𝐣𝑃𝑃1 𝐪𝐪 𝑞̇𝑞1 + 𝐣𝐣𝑃𝑃2 𝐪𝐪 𝑞̇𝑞2 + ⋯+ 𝐣𝐣𝑃𝑃𝑖𝑖 𝐪𝐪 𝑞̇𝑞𝑖𝑖 + ⋯+ 𝐣𝐣𝑃𝑃𝑛𝑛 𝐪𝐪 𝑞̇𝑞𝑛𝑛

𝛚𝛚 = 𝐣𝐣𝑂𝑂𝑂 𝐪𝐪 𝑞̇𝑞1 + 𝐣𝐣𝑂𝑂𝑂 𝐪𝐪 𝑞̇𝑞2 + ⋯+ 𝐣𝐣𝑂𝑂𝑂𝑂 𝐪𝐪 𝑞̇𝑞𝑖𝑖 + ⋯+ 𝐣𝐣𝑂𝑂𝑂𝑂 𝐪𝐪 𝑞̇𝑞𝑛𝑛

There is a superposition of effects, that 
can be used to compute the single 
contributions



Computation of the geometrical Jacobian
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Angular velocity

Joint 𝑖𝑖 prismatic: a prismatic joint does not give any contribution of angular velocity.

𝑞̇𝑞𝑖𝑖𝐣𝐣𝑂𝑂𝑂𝑂 = 0 ⇒ 𝐣𝐣𝑂𝑂𝑂𝑂 = 0

Joint 𝑖𝑖 rotational: a rotational joint gives a contribution of angular velocity directed as 
the axis of the joint

𝑞̇𝑞𝑖𝑖𝐣𝐣𝑂𝑂𝑂𝑂 = 𝜗̇𝜗𝑖𝑖𝐳𝐳𝑖𝑖−1 ⇒ 𝐣𝐣𝑂𝑂𝑂𝑂 = 𝐳𝐳𝑖𝑖−1 In making these considerations, we consider the 
joints downward in the kinematic chain as 
«frozen»



Computation of the geometrical Jacobian
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Linear velocity

Joint 𝑖𝑖 prismatic: a prismatic joint gives a contribution of linear velocity directed as the axis of 
the joint

𝑞̇𝑞𝑖𝑖𝐣𝐣𝑃𝑃𝑃𝑃 = 𝑑̇𝑑𝑖𝑖𝐳𝐳𝑖𝑖−1 ⇒ 𝐣𝐣𝑃𝑃𝑃𝑃 = 𝐳𝐳𝑖𝑖−1

Joint 𝑖𝑖 rotational: a rotational joint gives a contribution of 
linear velocity that can be obtained with a cross product

𝑞̇𝑞𝑖𝑖𝐣𝐣𝑃𝑃𝑃𝑃 = 𝜗̇𝜗𝑖𝑖𝐳𝐳𝑖𝑖−1 × 𝐫𝐫𝑖𝑖−1,𝑛𝑛 =
= 𝜗̇𝜗𝑖𝑖𝐳𝐳𝑖𝑖−1 × 𝐩𝐩 − 𝐩𝐩𝑖𝑖−1

⇓
𝐣𝐣𝑃𝑃𝑃𝑃 = 𝐳𝐳𝑖𝑖−1 × 𝐩𝐩 − 𝐩𝐩𝑖𝑖−1



Computation of the geometrical Jacobian

POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco 46

𝐣𝐣𝑃𝑃𝑃𝑃
𝐣𝐣𝑂𝑂𝑂𝑂

=

𝐳𝐳𝑖𝑖−1
𝟎𝟎

𝐳𝐳𝑖𝑖−1 × 𝐩𝐩 − 𝐩𝐩𝑖𝑖−1
𝐳𝐳𝑖𝑖−1

joint 𝑖𝑖 prismatic

joint 𝑖𝑖 rotational

The matrices needed to compute these vectors can be determined through direct kinematics 
relations:

𝐳𝐳𝑖𝑖−1 = 𝐑𝐑10 𝑞𝑞1 …𝐑𝐑𝑖𝑖−1𝑖𝑖−2 𝑞𝑞𝑖𝑖−1 𝐳𝐳0

�𝐩𝐩 = 𝐀𝐀10 𝑞𝑞1 …𝐀𝐀𝑛𝑛𝑛𝑛−1 𝑞𝑞𝑛𝑛 �𝐩𝐩0

�𝐩𝐩𝑖𝑖−1 = 𝐀𝐀10 𝑞𝑞1 …𝐀𝐀𝑖𝑖−1𝑖𝑖−2 𝑞𝑞𝑖𝑖−1 �𝐩𝐩0

where:

(homogeneous 
coordinates)

𝐳𝐳0 =
0
0
1

, �𝐩𝐩0 =
0
0
0
1

, �𝐩𝐩 = 𝐩𝐩
1

We can then compute the geometrical Jacobian column by column:



Computation of the geometrical Jacobian: example
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𝐩𝐩0 =
0
0
0

𝐩𝐩1 =
𝑎𝑎1𝑐𝑐1
𝑎𝑎1𝑠𝑠1

0
𝐩𝐩2 =

𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐12
𝑎𝑎1𝑠𝑠1 + 𝑎𝑎2𝑠𝑠12

0

𝐩𝐩 =
𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐12 + 𝑎𝑎3𝑐𝑐123
𝑎𝑎1𝑠𝑠1 + 𝑎𝑎2𝑠𝑠12 + 𝑎𝑎3𝑠𝑠123

0
𝐳𝐳0 = 𝐳𝐳1 = 𝐳𝐳2 =

0
0
1

note:

𝐚𝐚 × 𝐛𝐛 =
𝑎𝑎2𝑏𝑏3 − 𝑎𝑎3𝑏𝑏2
𝑎𝑎3𝑏𝑏1 − 𝑎𝑎1𝑏𝑏3
𝑎𝑎1𝑏𝑏2 − 𝑎𝑎2𝑏𝑏1

𝐉𝐉 𝐪𝐪 = 𝐳𝐳0 × 𝐩𝐩 − 𝐩𝐩0 𝐳𝐳1 × 𝐩𝐩 − 𝐩𝐩1 𝐳𝐳2 × 𝐩𝐩 − 𝐩𝐩2
𝐳𝐳0 𝐳𝐳1 𝐳𝐳2

𝐉𝐉 =

−𝑎𝑎1𝑠𝑠1 − 𝑎𝑎2𝑠𝑠12 − 𝑎𝑎3𝑠𝑠123 −𝑎𝑎2𝑠𝑠12 − 𝑎𝑎3𝑠𝑠123 −𝑎𝑎3𝑠𝑠123
𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐12 + 𝑎𝑎3𝑐𝑐123 𝑎𝑎2𝑐𝑐12 + 𝑎𝑎3𝑐𝑐123 𝑎𝑎3𝑐𝑐123

0 0 0
0 0 0
0 0 0
1 1 1



Analytical Jacobian

POLITECNICO DI MILANO Control of industrial robots - Review of robot kinematics - Paolo Rocco 48

Let’s go back to the direct kinematic equation of a manipulator:

Matrix: is called analytical Jacobian of the manipulator.

𝐱𝐱 = 𝐤𝐤 𝐪𝐪 = 𝐩𝐩 𝐪𝐪
ϕ 𝐪𝐪

where ϕ is a minimal representation of the orientation. Differentiating w.r.t. time, we obtain:

𝐱̇𝐱 =
𝜕𝜕𝜕𝜕 𝐪𝐪
𝜕𝜕𝜕𝜕

𝐪̇𝐪 = 𝐉𝐉𝐴𝐴 𝐪𝐪 𝐪̇𝐪

On the other hand:

𝐱̇𝐱 =
𝐩̇𝐩
ϕ̇ =

⁄𝜕𝜕𝜕𝜕 𝐪𝐪 𝜕𝜕𝜕𝜕 𝐪̇𝐪
⁄𝜕𝜕ϕ 𝐪𝐪 𝜕𝜕𝜕𝜕 𝐪̇𝐪 =

𝐉𝐉𝑃𝑃 𝐪𝐪
𝐉𝐉𝜙𝜙 𝐪𝐪 𝐪̇𝐪

𝐉𝐉𝐴𝐴 𝐪𝐪 =
𝐉𝐉𝑃𝑃 𝐪𝐪
𝐉𝐉𝜙𝜙 𝐪𝐪



Analytical vs. geometrical Jacobian
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Let us thus express the velocity (linear and angular) of the tool frame in terms 
of the derivatives of 𝐩𝐩 andϕ :

The relation between analytical and geometrical Jacobian follows: 𝐉𝐉 = 𝐓𝐓𝐴𝐴 φ 𝐉𝐉𝐴𝐴

The link between the angular velocity ω and the derivative of vector ϕ expressing the 
orientation is the following one:

where 𝐓𝐓 is a matrix that depends on the representation of the orientation:

𝐓𝐓 ϕ =
0
0
1

−𝑠𝑠𝜙𝜙
𝑐𝑐𝜙𝜙
0

𝑐𝑐𝜙𝜙𝑠𝑠𝜗𝜗
𝑠𝑠𝜙𝜙𝑠𝑠𝜗𝜗
𝑐𝑐𝜗𝜗

(for the ZYZ Euler angles)

𝛚𝛚 = 𝐓𝐓 ϕ ϕ̇

𝐯𝐯
𝛚𝛚 = 𝐩̇𝐩

𝛚𝛚 =
𝐩̇𝐩

𝐓𝐓 ϕ ϕ̇ = 𝐈𝐈 𝟎𝟎
𝟎𝟎 𝐓𝐓 ϕ

𝐩̇𝐩
ϕ̇ = 𝐓𝐓𝐴𝐴 ϕ 𝐱̇𝐱 = 𝐓𝐓𝐴𝐴 ϕ 𝐉𝐉𝐴𝐴𝐪̇𝐪 where: 𝐓𝐓𝐴𝐴 ϕ = 𝐈𝐈 𝟎𝟎

𝟎𝟎 𝐓𝐓 ϕ



Kinematic singularities
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The equation defining the geometrical Jacobian is:

The values of 𝐪𝐪 for which matrix 𝐉𝐉 is rank-deficient are called kinematic singularities. At a 
kinematic singularity we have:

1. Loss of mobility (it is not possible to impose arbitrary motion laws)
2. Possibility of infinite solutions to the kinematic inversion problem
3. High velocities in joint space (around the singularity)

The singularities may happen:

1. At the borders of the manipulator work-space
2. Inside the manipulator work-space

The latter are more problematic, since they can be incurred with trajectories planned 
in the operational space.

𝐯𝐯
𝛚𝛚 = 𝐩̇𝐩

𝛚𝛚 = 𝐉𝐉 𝐪𝐪 𝐪̇𝐪



Kinematic singularities: example
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For a two-link manipulator the Jacobian is: 

In these configurations the two columns 
of the Jacobian are not independent.

𝐉𝐉 =
−𝑎𝑎1𝑠𝑠1 − 𝑎𝑎2𝑠𝑠12 −𝑎𝑎2𝑠𝑠12
𝑎𝑎1𝑐𝑐1 + 𝑎𝑎2𝑐𝑐12 𝑎𝑎2𝑐𝑐12

We can compute singularities:

det 𝐉𝐉 = 𝑎𝑎1𝑎𝑎2𝑠𝑠2 = 0 ⇔ 𝜗𝜗2 = �0
𝜋𝜋

These are singularities at the borders of the workspace.

𝐉𝐉 = − 𝑎𝑎1 + 𝑎𝑎2 𝑠𝑠1 −𝑎𝑎2𝑠𝑠1
𝑎𝑎1 + 𝑎𝑎2 𝑐𝑐1 𝑎𝑎2𝑐𝑐1

𝜗𝜗2 = 0



Kinematic singularities of a complete manipulator
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Arm singularity Elbow singularity 

Wrist singularity 
Source: ABB



Consequences of kinematic singularities on robot motion
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Inversion of the differential kinematics
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The differential kinematics is linear for a certain value of 𝐪𝐪 :

Given a vector of desired coordinates in the operational space 𝐱𝐱𝑑𝑑 and an initial condition on 𝐪𝐪we 
might solve the kinematic inversion problem by inverting the differential kinematics and then 
integrating. If the Jacobian is square (𝑛𝑛 = 6):

However, using this expression directly, drifts of the solution may occur.
The error in the operational space made by the kinematic inversion algorithm is then introduced:

𝐞𝐞 = 𝐱𝐱𝑑𝑑 − 𝐱𝐱

𝐱̇𝐱 = 𝐉𝐉𝐴𝐴 𝐪𝐪 𝐪̇𝐪

𝐪̇𝐪 = 𝐉𝐉𝐴𝐴−1 𝐪𝐪 𝐱̇𝐱𝑑𝑑 ⇒ 𝐪𝐪 𝑡𝑡 = �
0

𝑡𝑡

𝐪̇𝐪 𝜎𝜎 𝑑𝑑𝑑𝑑 + 𝐪𝐪 0



Inverse of the Jacobian
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If we adopt the following dependence of 𝐪̇𝐪 from 𝐞𝐞:

𝐪̇𝐪 = 𝐉𝐉𝐴𝐴−1 𝐪𝐪 𝐱̇𝐱𝑑𝑑 + 𝐊𝐊𝐊𝐊

we obtain:

𝐞̇𝐞 + 𝐊𝐊𝐊𝐊 = 0

and the 
diagram:

 

JA
−1(q)K ++

−
xd +

xd
.

q. q

k(q)x

𝐞̇𝐞 + 𝐊𝐊𝐊𝐊 = 0

Mathematically, this corresponds to 
solve the inverse kinematics problem 
through a Gauss-Newton iterative 
method.
Proof of convergence is trivial as:



Transpose of the Jacobian
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If we adopt the following (simpler) dependence:

𝐪̇𝐪 = 𝐉𝐉𝐴𝐴𝑇𝑇 𝐪𝐪 𝐊𝐊𝐊𝐊

we obtain the 
diagram:

 

JA
T(q)K+

−
xd q. q

k(q)x

Mathematically, this corresponds to 
solve the inverse kinematics problem 
through a gradient descent iterative 
method.
Proof of convergence can be obtained 
through a Lyapunov argument.
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