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 With the motion planning we want to assign the way the robot 
evolves from an initial posture to a final one.

 Motion planning is one of the essential problems in robotics. Most 
of the success on the market of a robot depends on the quality of 
motion planning.

 With these slides, we will review some basic concepts in motion 
planning of a robot.

Motion planning
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The following terminology is used when discussing motion planning:

 Path: it is a geometric concept and stands for a line in a certain space (the space of Cartesian 
positions, the space of the orientations, the joint space,..) to be followed by the object whose 
motion has to be planned

 Timing law: it is the time dependence with which we want the robot to travel along the 
assigned path

 Trajectory: it is a path over which a timing law has been assigned

The final result of a motion planning problem is thus a trajectory that will then serve as an input 
to the real-time position/velocity controllers.

Definitions
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Trajectories in the operational space: the path (position and 
orientation) of the robot end effector is specified in the 
common Cartesian space.
We need to specify:

• The final point of the motion
• The path the end-effector has to cover

 task description is natural
 constraints on the path can be accounted for
 singular points or redundant degrees of 

freedom generate problems
 online kinematic inversion is needed

Trajectories in the operational space
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Trajectories in joint space: the desired joint positions are directly 
specified.
We need to specify:

• The final point of the motion

 problems related to kinematic singularities and redundant 
degrees of freedom are solved directly

 it is a mode of interest when we just want that the axes move 
from an initial to a final pose (and we are not interested in the 
resulting motion of the end effector)

 online kinematic inversion is not needed

Trajectories in joint space
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Inverse
Kinematicstarget

state
INSTRUCTION

STACK

TrajGen

Axis
controller

state update

 Instruction stack: list of instructions to be executed, specified using the proprietary programming 
language

 Trajectory generation: converts an instruction into a trajectory to be executed
 Inverse kinematics: maps the trajectory from the Cartesian space to the joint space (if needed)
 Axis controllers & drives: closes the control loop ensuring tracking performance

Elements of a motion planning and control system
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 To make a manipulator perform 
appropriate movements, it must be 
instructed.

 This is done with appropriate 
commands that induce the robot to 
move subsequently to the points 
that correspond to the execution of 
the desired task.

 A robot program is a sequence of 
motion commands consecutive 
points (“targets”)

Motion programming

STACK
DI ISTRUZIONI
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A first mode for motion programming is the so called teaching-by-showing (also 
known as lead-through programming).

Using the teach-pendant, the operator moves the manipulator along the desired 
path. Position transducers memorize the positions the robot has to reach, which 
will be then jointed by a software for trajectory generation, possibly using some of 
the intermediate points as via points.
The robot will be then able to autonomously repeat the motion. 

COMAU SpA

No particular programming skills are requested to the operator. 
On the other hand the method has limitations, since making a program requires that the 
programmer has the robot at his/her disposal (and then the robot is not productive).

Teaching by showing
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 The generation of the robot program can also be 
done in a robot programming environment. The 
robot programmer can move the robot in a 
virtual environment with high fidelity rendering 
of the robot motion in the robotic cell.

 There are tools to record positions and to make 
the robot move along a path formed by such 
positions.

 At the end the robot programming environment 
produces the code ready to be downloaded into 
the robot controller.

ABB RobotStudio

Programming environments
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The robot programmer can also write the robot program directly using a robotic programming 
language.

With a robotic programming language the operator can program the motion of the robot as well 
as complex operations where the robot, inside a work-cell, interacts with other machines and 
devices. With respect to a general purpose programming language, the language provides 
specific robot-oriented functionalities.

All the robots of the different manufacturers have their own programming language (RAPID for 
ABB, PDL2 for COMAU, KRL for KUKA, KAREL for Fanuc, AS for Kawasaki …).

Programming languages
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For example, in the COMAU PDL2 language, with the instruction MOVE motion commands of the 
arms are given. The format of the instruction is as follows:

MOVE <ARM[n]> <trajectory> dest_clause <opt_clauses> <sync_clause>

(note that a single controller can manage several arms).

The trajectory clause can take one of the following values:

LINEAR
CIRCULAR
JOINT

(linear motion in Cartesian space)
(circular motion in Cartesian space)
(motion in joint space)

The default is a motion in joint space.

The instruction MOVE
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As we have seen, in general the user, when assigning a motion command, specifies a restricted number 
of parameters as inputs:

 Space of definition: joint space or Cartesian space

 For the path: endpoints, possible intermediate points, path geometry (segment, circular arc, etc..)

 For the timing law: overall travelling time, maximum velocity and/or acceleration (or percentages 
thereof)

Based on this information the trajectory planner generates a dense sequence of intermediate points in the 
relevant space (joint space or Cartesian space) at a fixed rate (e.g. 10 ms).
In case of Cartesian space trajectories these points are additionally converted into points in joint space 
through kinematic inversion.
These values can the be interpolated in order to match the rate of the motion controller (e.g 1ms or 500µs): 
this is also called micro-interpolation

Inputs and outputs of a trajectory planner
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When we plan the trajectory in joint space we want to generate a function 
𝐪𝐪 𝑡𝑡 which interpolates the values assigned for the joint variables at the initial 
and final points.

It is sufficient to work component-wise (i.e. we consider a single joint variable 
𝑞𝑞𝑖𝑖 𝑡𝑡 ): in the following we will then consider planning of a scalar variable.

When planning in joint space, the definition of the path as a geometric entity is 
not an issue, since we are not interested in a coordinated motion of the joints 
(apart from having all the joints complete their motion at the same instant).

Trajectories in joint space
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The simplest case of trajectory planning for point-to-point 
motion is when some initial and final conditions are assigned on 
positions, velocities and possibly on acceleration and jerk and 
the travel time.

Polynomial functions of the following kind can be considered:

𝑞𝑞 𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + ⋯+ 𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛

The higher the degree 𝑛𝑛 of the polynomial, the larger the number of boundary 
conditions that can be satisfied and the smoother the trajectory will be.

t

q

ti

qi

?
tf

qf

Polynomial trajectories
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Suppose that the following boundary conditions are assigned:
 an initial and a final instants 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑓𝑓
 initial position and velocity 𝑞𝑞𝑖𝑖 and �̇�𝑞𝑖𝑖
 final position and velocity 𝑞𝑞𝑓𝑓 and �̇�𝑞𝑓𝑓

We then have four boundary conditions. In order to satisfy them we need a 
polynomial of order at least equal to three (cubic polynomial):

If we impose the boundary conditions:

𝑞𝑞 𝑡𝑡𝑖𝑖 = 𝑞𝑞𝑖𝑖
�̇�𝑞 𝑡𝑡𝑖𝑖 = �̇�𝑞𝑖𝑖
𝑞𝑞 𝑡𝑡𝑓𝑓 = 𝑞𝑞𝑓𝑓
�̇�𝑞 𝑡𝑡𝑓𝑓 = �̇�𝑞𝑓𝑓

𝑞𝑞 𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1 𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑎𝑎2 𝑡𝑡 − 𝑡𝑡𝑖𝑖 2 + 𝑎𝑎3 𝑡𝑡 − 𝑡𝑡𝑖𝑖 3

we obtain:

𝑎𝑎0 = 𝑞𝑞𝑖𝑖
𝑎𝑎1 = �̇�𝑞𝑖𝑖

𝑎𝑎2 =
−3 𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑓𝑓 − 2�̇�𝑞𝑖𝑖 + �̇�𝑞𝑓𝑓 𝑇𝑇

𝑇𝑇2

𝑎𝑎3 =
2 𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑓𝑓 + �̇�𝑞𝑖𝑖 + �̇�𝑞𝑓𝑓 𝑇𝑇

𝑇𝑇3 𝑇𝑇 = 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

Cubic polynomials
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𝑡𝑡𝑖𝑖 = 0, 𝑡𝑡𝑓𝑓 = 1 𝑠𝑠,

𝑞𝑞𝑖𝑖 = 10°, 𝑞𝑞𝑓𝑓 = 30°,

�̇�𝑞𝑖𝑖 = �̇�𝑞𝑓𝑓 = 0°/𝑠𝑠

-0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

de
g

Position

-0.2 0 0.2 0.4 0.6 0.8 1
-10

0

10

20

30

40

t(s)

de
g/

s

Velocity

-0.2 0 0.2 0.4 0.6 0.8 1
-150

-100

-50

0

50

100

150

t(s)

de
g/

s2

Acceleration

Cubic polynomials: example



Control of industrial robots – Review of basic motion planning – Paolo Rocco

In order to assign conditions also on the accelerations, we need to consider polynomials of degree 5:

𝑞𝑞 𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1 𝑡𝑡 − 𝑡𝑡𝑖𝑖 + 𝑎𝑎2 𝑡𝑡 − 𝑡𝑡𝑖𝑖 2 + 𝑎𝑎3 𝑡𝑡 − 𝑡𝑡𝑖𝑖 3 + 𝑎𝑎4 𝑡𝑡 − 𝑡𝑡𝑖𝑖 4 + 𝑎𝑎5 𝑡𝑡 − 𝑡𝑡𝑖𝑖 5

Imposing  boundary conditions:

𝑞𝑞 𝑡𝑡𝑖𝑖 = 𝑞𝑞𝑖𝑖 𝑞𝑞 𝑡𝑡𝑓𝑓 = 𝑞𝑞𝑓𝑓
�̇�𝑞 𝑡𝑡𝑖𝑖 = �̇�𝑞𝑖𝑖 �̇�𝑞 𝑡𝑡𝑓𝑓 = �̇�𝑞𝑓𝑓
�̈�𝑞 𝑡𝑡𝑖𝑖 = �̈�𝑞𝑖𝑖 �̈�𝑞 𝑡𝑡𝑓𝑓 = �̈�𝑞𝑓𝑓

we obtain:

𝑎𝑎0 = 𝑞𝑞𝑖𝑖
𝑎𝑎1 = �̇�𝑞𝑖𝑖
𝑎𝑎2 =

1
2 �̈�𝑞𝑖𝑖

𝑎𝑎3 =
20 𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖 − 8�̇�𝑞𝑓𝑓 + 12�̇�𝑞𝑖𝑖 𝑇𝑇 − 3�̈�𝑞𝑓𝑓 − �̈�𝑞𝑖𝑖 𝑇𝑇2

2𝑇𝑇3

𝑎𝑎4 =
30 𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑓𝑓 + 14�̇�𝑞𝑓𝑓 + 16�̇�𝑞𝑖𝑖 𝑇𝑇 + 3�̈�𝑞𝑓𝑓 − 2�̈�𝑞𝑖𝑖 𝑇𝑇2

2𝑇𝑇4

𝑎𝑎5 =
12 𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖 − 6 �̇�𝑞𝑓𝑓 + �̇�𝑞𝑖𝑖 𝑇𝑇 − �̈�𝑞𝑓𝑓 − �̈�𝑞𝑖𝑖 𝑇𝑇2

2𝑇𝑇5 𝑇𝑇 = 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

Polynomials of degree five
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𝑡𝑡𝑖𝑖 = 0, 𝑡𝑡𝑓𝑓 = 1 𝑠𝑠,

𝑞𝑞𝑖𝑖 = 10°, 𝑞𝑞𝑓𝑓 = 30°,

�̇�𝑞𝑖𝑖 = �̇�𝑞𝑓𝑓 = 0,

�̈�𝑞𝑖𝑖 = �̈�𝑞𝑓𝑓 = 0
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A quite common industrial practice  to generate the trajectory consists in planning a linear position 
profile adjusted at the beginning and at the end of the trajectory with parabolic bends. The resulting 
velocity profile has the typical trapezoidal shape. 

The trajectory is then composed of three parts:

1. Constant accel., linear velocity, parabolic position;
2. Zero acceleration, constant velocity, linear position;
3. Constant deceleration, linear velocity, parabolic position.

Often the duration 𝑇𝑇𝑎𝑎 of the acceleration phase (phase 1) is set equal to the duration of 
the deceleration phase (phase 3): this way a trajectory is obtained, which is symmetric 
with respect to the central time instant. Of course it has to be 𝑇𝑇𝑎𝑎 ≤ ⁄𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖 2 .

tti+Ta

qv
.
q.

tf−Ta tfti

1 2 3

Trapezoidal velocity profile (TVP)
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𝑡𝑡𝑖𝑖 = 0, 𝑡𝑡𝑓𝑓 = 4𝑠𝑠, 𝑇𝑇𝑎𝑎 = 1𝑠𝑠,

𝑞𝑞𝑖𝑖 = 0°, 𝑞𝑞𝑓𝑓 = 30°, �̇�𝑞𝑣𝑣 = 10°/𝑠𝑠
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Trajectory planning in the joint space yields unpredictable motions of the end-
effector. When we want the motion to evolve along a predefined path in the 
operational space, it is necessary to plan the trajectory directly in this space.

Trajectory planning in the operational space entails both a path 
planning problem and a timing law planning problem: both the 
path and the timing law can be expressed analytically, as it will be 
shown in the following.

Trajectories in the operational space
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Let us consider a parametric representation of a curve in space. The parameterization can be 
performed with respect to the natural coordinate (length of the arc of trajectory): 𝐩𝐩 = 𝐩𝐩 𝑠𝑠

x

y

z

t

n
b

ppi pf 𝐭𝐭 =
𝑑𝑑𝐩𝐩 𝑠𝑠
𝑑𝑑𝑠𝑠

𝐧𝐧 =
⁄𝑑𝑑2𝐩𝐩 𝑠𝑠 𝑑𝑑𝑠𝑠2

⁄𝑑𝑑2𝐩𝐩 𝑠𝑠 𝑑𝑑𝑠𝑠2

𝐛𝐛 = 𝐭𝐭 × 𝐧𝐧

We can define the tangent, normal and 
binormal unit vectors:

unit tangent vector

unit normal vector 
(belongs to the 
osculating plane)

unit binormal vector

Path parameterization
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As an example of path parameterization we can consider a 
segment in space (linear Cartesian path).

𝐩𝐩 𝑠𝑠 = 𝐩𝐩1 +
𝑠𝑠

𝐩𝐩2 − 𝐩𝐩1
𝐩𝐩2 − 𝐩𝐩1

Linear path

A linear path is completely characterized once two points 
in Cartesian space are given (the first one being the 
current position of the end-effector):
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Another possibility offered by robot controllers is to define a 
circular path.
This can be done defining three points (the first one being
the current position of the end-effector) and applying some 
geometrical considerations.

Circular path
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For the position trajectories, taking into account the 
parameterization of the path with respect to the natural 
coordinate 𝐩𝐩 = 𝐩𝐩 𝑠𝑠 , we will assign the timing law through the 
function 𝑠𝑠 𝑡𝑡 . 

In order to determine function 𝑠𝑠 𝑡𝑡 we can use any time law. 
Also we notice that:

tt0

ss0

px=px(s)
py=py(s)
pz=pz(s)

�̇�𝐩 = �̇�𝑠
𝑑𝑑𝐩𝐩
𝑑𝑑𝑠𝑠

= �̇�𝑠𝐭𝐭 �̇�𝑠 is then the norm of the velocity

Position trajectories

Linear velocity of 
the end effector

t

smax

.
s

tfti

.



Control of industrial robots – Review of basic motion planning – Paolo Rocco

Orientation can be planned by resorting to the axis/angle representation. 

Orientation trajectories

The axis is kept fixed while the angle changes with time.
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STACK
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state update

 Instruction stack: list of instructions to be executed, specified using the proprietary programming 
language

 Trajectory generation: converts an instruction into a trajectory to be executed
 Inverse kinematics: maps the trajectory from the Cartesian space to the joint space (if needed)
 Axis controllers & drives: closes the control loop ensuring tracking performance

Elements of a motion planning and control system
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Inverse kinematics has already been discussed with reference to the study of the 
kinematics of the (possibly redundant) manipulator.

 

J#(q)K ++
−

rd +

rd
.

In−J#(q)J(q)

q0
.

++ q. q

f(q)r

Options are:

 Closed form analytic solution 
(whenever possible)

 Numerical solution through 
(pseudo) inverse of the 
Jacobian

Inverse kinematics 
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