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EXERCISE 1

1. Consider the manipulator sketched in the picture:
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Find the expression of the inertia matrix B(q) of the manipulator1.

Denavit-Hartenberg frames can be defined as sketched in this picture:
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Computations of the Jacobians:
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For the above computations, we can make reference to the following picture:
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and to the following auxiliary vectors:
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The inertia matrix can be computed now:
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2. Compute the gravitational terms for this robot.

Since the vertical axis is the z0 axis pointing upwards, the gravity acceleration vector is:
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The gravitational torques are thus:
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3. Ignoring the Coriolis and centrifugal terms, write the dynamic model of the manipulator and show
that this model is linear with respect to a certain set of dynamic parameters.

Neglecting Coriolis and centrifugal terms, the dynamic model can be written as:

B(q)q̈ + g(q) = τ

The two equations that form the model are:

(m1 +m2) d̈1 −m2l2c2ϑ̈2 + (m1 +m2) g = τ1

−m2l2c2d̈1 +
(
m2l
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)
ϑ̈2 −m2gl2c2 = τ2

The model can be written in the following form which is linear in the dynamic parameters:

Y (q, q̇, q̈) Π = τ

where the vector of dynamic parameters is expressed as:
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while the regressor matrix is:
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4. The linearity of the model in a set of dynamic parameters allows to setup experiments for the
identification of such parameters. For a generic manipulator, explain what are the variables that
need to be recorded during the experiments. With reference to the dynamic model of this exercise,
is it possible to experimentally identify the mass of the first link?

Since at each time instant the regressor matrix has to be computed, we need to record the joint
positions, velocities and accelerations, along with the joint torques.
For this specific manipulator it is not possible to identify the mass of the first link alone, we can
only estimate the sum of the masses of the two links.

EXERCISE 2

1. Explain what is the purpose of the kinematic calibration of a robot manipulator and why it is
needed.

The kinematic calibration is a process, based on a series of measurements of the manipulator’s end
effector, that allows to obtain accurate estimates of the DH parameters. It is needed because of
tolerances in mechanical building of components and in the assembly of the links and joints as well
as for possible issues in encoder mounting

2. In the kinematic calibration of a robot manipulator the following equation is used:

∆x = Φ∆ζ

Explain the meaning of each symbol used in such equation, as well as the size of the vectors.

In this equation:
∆x = xact − xnom are the deviations of the actual pose variables from the nominal ones (a 6 × 1
vector)
Φ is the calibration matrix, defined as:

Φ =
[
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∂k
∂d

∂k
∂θ

]
where k is the direct kinematic function, while a, α,d, θ are the vectors of the DH parameters for
the n joints. Matrix Φ has 6 rows and 4n columns.
∆ζ are the deviations of the DH parameters and are defined as:

∆ζ =


∆a
∆α
∆d
∆θ


∆ζ is a 4n× 1 vector.



3. Based on the above equation, explain how the kinematic calibration can be performed.

The equation:

∆x = Φ∆ζ

is a system of 6 equations in 4n unknowns. We need to perform a certain number l of experiments,
each time changing the pose of the end-effector. Stacking the above equations referred to the various
poses, we have:

∆x̄ =

 ∆x1
...

∆xl

 =

 ∆Φ1
...

∆Φl

∆ζ = Φ̄∆ζ

this equation can be solved for ∆ζ in a least squares form:

∆ζ = Φ̄]∆x̄

where Φ̄] is the left pseudoinverse of matrix Φ̄.

The deviation ∆ζ is then added to the nominal values of the DH parameters ζ. The process can be
iterated until convergence under a certain threshold.

4. Consider now a kinematically redundant manipulator. Write the general solution of the inverse
kinematics at velocity level. Is the pseudoinverse matrix that appears in this equation the same
pseudoinverse of the kinematic calibration problem?

The forward kinematics at velocity level is written as:

ṙ = Jq̇

where q̇ are joint velocities, ṙ are task velocities and J is a Jacobian matrix. The solution of the
inverse kinematics is written as:

q̇ = J]ẋ +
(
I − J]J

)
q̇0

where J] is the right pseudoinverse of the Jacobian (in the kinematic calibration problem the left
pseudoinverse is used).

EXERCISE 3

1. Consider a simple mass as in this picture:
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Write the expression of an (explicit) impedance controller that can assign a prescribed and complete
impedance relation.

To completely assign the impedance relation, we need to measure the interaction force. If this is
the case, a suitable control law is:

u =
M

Md
(−k1p− k2v + f) − f

In this case, the following impedance relation is obtained:

Mda+ k2v + k1p = f

2. Still making reference to a single degree of freedom mechanism, sketch the block diagram of an
admittance controller. What is the assumption that must be enforced on the motion control system
in order to claim that the prescribed impedance is actually achieved?

The block diagram is sketched in the picture:

In order to have the prescribed impedance assigned, we need to assume a high bandwidth position
controller, so that it guarantees that the output of the admittance controller is correctly tracked.

3. The admittance controller can be used to implement one of the possible collaborative modes between
the robot and the human. Explain what is this mode and how admittance control can enable such
collaborative mode. In particular, specify whether all the three elements of an impedance relation
(mass, spring and damper) are used in this case.

The admittance control allows to implement the manual guidance. The force applied by the human
when guiding the robot is acquired by the admittance controller and converted into suitable motion
of the end-effector, so as to impose a generalized mass-spring-damper dynamical behaviour of the
robot. Typically, the spring element is set to zero, to avoid the robot to come back to a rest position
when the human leaves the end-effector.

4. The speed and separation monitoring is another collaborative mode. Making reference to the fol-
lowing picture, write the inequality that needs to be satisfied according to this safety standard. Is



the measurement of the human position needed in this standard and is it needed in the power and
force limiting standard?

The inequality can be written as:

D (t0) − vR (Tr + TB) − vH (Tr + TB) ≥ S

meaning that the distance between human and robot has to be larger than the space that the robot
and the human can cover, plus a minimum distance. The measurement of the human position is
needed, in order to compute the distance with the robot, while in the power and force limiting
standard it is not needed.


