Control of Industrial Robots

Prof. Rocco

July 10, 2023

NAME:

UNIVERSITY ID NUMBER:
SIGNATURE:

Warnings

- This file consists of $\mathbf{8}$ pages (including cover).
- During the exam you are not allowed to exit the room for any other reason than handing your work or withdrawing from the exam.
- You are not allowed to withdraw from the exam during the first 30 minutes.
- During the exam you are not allowed to consult books or any kind of notes.
- You are not allowed to use calculators with graphic display.
- Solutions and answers can be given either in English or in Italian.
- Solutions and answers must be given exclusively in the reserved space. Only in the case of corrections, or if the space is not sufficient, use the back of the front cover.
- The clarity and the order of the answers will be considered in the evaluation.
- At the end of the test you have to hand this file only. Every other sheet you may hand will not be taken into consideration.

EXERCISE 1

1. Consider the manipulator sketched in the picture, where the mass of the second link is assumed to be concentrated at the end-effector:

Find the expression of the inertia matrix $\mathbf{B}(\mathbf{q})$ of the manipulator.
2. Compute the matrix $\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})$ of the Coriolis and centrifugal terms ${ }^{1}$ for this manipulator.
3. Ignoring the gravitational terms, write the complete dynamic model for this manipulator.

[^0]4. For this specific manipulator, wtite the expression of the kinetic energy. Is it possible that this kinetic energy is zero for joint velocities different from zero?

EXERCISE 2

1. Consider a single mass affected by an external force f and a control force u :

Write the expression of an impedance control law that makes the system react to the external force f like a mass-spring-damper system, with all parameters assignable.
2. Consider a manipulator where a system of forces is applied at the end-effector. Discuss the statics of the manipulator, i.e. find analytically the relation between this system of force and the joint torques at the equilibrium.
3. Write the expressions of a translational impedance and the expression of a rotational impedance.
4. Assume now that a force sensor at the end effector is unavailable. Discuss a method to estimate force and moments at the end effector, making reference to the concept of residual vector.

EXERCISE 3

1. Explain what is the purpose of the kinematic calibration of a robot manipulator and why it is needed.
2. In the kinematic calibration of a robot manipulator the following equation is used:

$$
\Delta \mathrm{x}=\boldsymbol{\Phi} \Delta \zeta
$$

Explain the meaning of each symbol used in such equation, as well as the size of the vectors.
3. Consider now a robot mounting a camera. Explain what are the extrinsic and the intrinsic calibrations. What is the skew parameter in this context?
4. Explain the difference between an eye-to-hand and an eye-in-hand configuration for the camera. Which one suffers the most of occlusions and which one of changes of the field of view?

[^0]: ${ }^{1}$ The general expression of the Christoffel symbols is $c_{i j k}=\frac{1}{2}\left(\frac{\partial b_{i j}}{\partial q_{k}}+\frac{\partial b_{i k}}{\partial q_{j}}-\frac{\partial b_{j k}}{\partial q_{i}}\right)$

