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EXERCISE 1
Consider the manipulator sketched in the picture:
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1. Find the expression of the inertia matrix B(q) of the manipulator1

Denavit-Hartenberg frames can be defined as sketched in this picture:
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Computations of the Jacobians:
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For the above computations, we can make reference to the following picture:
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and to the following auxiliary vectors:

pl2 =

 −a1 + l2c2
0

d1 + l2s2

 ,p1 =

 −a1
0
d1

 , z1 =

 0
−1
0


The inertia matrix can be computed now:

B(q) = m1J
(l1)T

P J
(l1)
P +m2J

(l2)T

P J
(l2)
P + I2J

(l2)T

O J
(l2)
O

= m1

[
1 0
0 0

]
+m2

[
1 l2c2
l2c2 l22

]
+ I2

[
0 0
0 1

]
=

[
b11 b12
b12 b22

]
where:

b11 = m1 +m2

b12 = m2l2c2

b22 = m2l
2
2 + I2



2. Compute the matrix C(q, q̇) of the Coriolis and centrifugal terms2 for this manipulator.

The only derivative in the Christoffel symbols which is different from zero is:

∂b12
∂q2

=
∂b21
∂q2

= −m2l2s2

therefore

c111 = 0 c211 = 0

c112 = c121 = 0 c212 = c221 = 1
2

(
∂b21
∂q2

− ∂b12
∂q2

)
= 0

c122 = 1
2

(
∂b12
∂q2

+ ∂b21
∂q2

)
= −m2l2s2 c222 = 0

The matrix of the Coriolis and centrifugal terms is thus:

C =

[
c11 c12
c21 c22

]
where:

c11 = c111q̇1 + c112q̇2 = 0

c12 = c121q̇1 + c122q̇2 = −m2l2s2ϑ̇2

c21 = c211q̇1 + c212q̇2 = 0

c22 = c221q̇1 + c222q̇2 = 0

3. Check that matrix N(q, q̇) = Ḃ(q) − 2C(q, q̇) is skew symmetric.

We have that:

N(q, q̇) = Ḃ(q)−2C(q, q̇) =

[
0 −m2l2s2ϑ̇2

−m2l2s2ϑ̇2 0

]
−2

[
0 −m2l2s2ϑ̇2
0 0

]
=

[
0 m2l2s2ϑ̇2

−m2l2s2ϑ̇2 0

]
which is a skew-symmetric matrix.

4. For a generic manipulator, ignoring the gravitational terms and exploiting the skew symmetry of
matrix N, obtain an expression of the derivative with respect to time of the kinetic energy.

The kinetic energy is:

T =
1

2
q̇TB(q)q̇

2The general expression of the Christoffel symbols is cijk =
1

2

(
∂bij

∂qk
+

∂bik

∂qj
−

∂bjk

∂qi

)



Its time derivative is:
dT

dt
= q̇TB(q)q̈ +

1

2
q̇T Ḃ(q)q̇

Exploiting the dynamic model we have:

dT

dt
= q̇T [−C(q, q̇) + τ ] +

1

2
q̇T Ḃ(q)q̇ =

1

2
q̇T
[
Ḃ− 2C(q, q̇)

]
q̇ + q̇T τ

Thanks to the skew symmetry of the matrix, we finally obtain:

dT

dt
= q̇T τ

EXERCISE 2
Consider a kinematically redundant manipulator.

1. Write the general expression of the solutions of the inverse kinematics problem at velocity level.

Given a set of desired task variables rd, such that:

ṙd = Jq̇

where J is the Jacobian matrix, the general expression of the solution of the inverse kinematics is:

q̇ = J]ṙd + Pq̇0

J] is the pseudo-inverse of the Jacobian, defined as:

J] = JT
(
JJT

)−1
The term Pq̇0 defines the null-space motions: P is a matrix that projects a generic joint velocity
q̇0 in the null space of the Jacobian and takes the expression:

P = In − J]J

2. Express the solution in the form that includes a closed loop correction (kinematic control) and
explain why this correction is used.

The solution with closed-loop correction can be written as:

q̇ = J] [ṙd + K (rd − r)] + Pq̇0

where:
r = f(q)

is obtained through direct kinematics. The correction is used to recover errors with respect to an
assigned task rd due to initial mismatches, drifts, inaccuracies of the solution



3. Consider now the motion of the end effector along a linear path. Assigning to the natural coordinate
s a cubic dependence on time, derive the expressions of the maximum speed and the maximum
acceleration as functions of the displacement h and the positioning time T .

We express the natural coordinate in a terms of a normalized displacement σ and a normalized time
τ :

s = si + hσ(τ)

The expression of the normalized displacement is:

σ = a0 + a1τ + a2τ
2 + a3τ

3

With the boundary conditions σ(0) = 0, σ(1) = 1, σ′(0) = 0, σ′(1) = 0, the expression of σ and of
its first derivatives is:

σ(τ) = 3τ2 − 2τ3

σ′(τ) = 6τ − 6τ2

σ′′(τ) = 6 − 12τ

The maximum values of such derivatives are then:

σ′max = σ′(0.5) =
3

2
σ′′max = σ′′(0) = 6

which yields to the expressions of the maximum speed and acceleration:

ṡmax =
3

2

h

T

s̈max = 6
h

T 2

4. Assume that the length of the segment to cover is 1 m, the maximum linear velocity of the end
effector is 2m/s and the maximum linear acceleration 4m/s2. Compute the minimum positioning
time, adopting a cubic dependence on time.

The expressions of the maximum speed and acceleration obtained previously imply the following
inequalities on the positioning time:

T ≥ 3h

2ṡmax
=

3

4
= 0.75

T ≥
√

6h

ṡmax
=

√
3

2
= 1.22



The minimum positioning time is then 1.22

EXERCISE 3
Consider a robot that uses a camera.

1. Explain what are the extrinsic and the intrinsic calibrations, making in particular reference to the
notion of camera intrinsic matrix.

The extrinsic calibration is the determination of the extrinsic parameters of the camera, like the
position and the orientation of the camera with respect to a reference frame. The intrinsic calibration
is the determination of the intrinsic parameters of the camera (like the focal length λ) as well as
of some additional parameters. The intrinsic parameters are usually organized in a matrix (camera
intrinsic matrix):

K =

 fx s cx
0 fy cy
0 0 1


where cx and cy are the coordinates of the optical center, fx and fy are the ratios between the focal
length and the size (along x and y) of the pixel, s is a skew parameter.

2. With reference to the following sketch, define what an image feature is and write the equations of
the perspective projection method.

The image feature is the coding of any information that can be retrieved from an image, for example
the two coordinates of a point in the image plane. The equations of the perspective projection can
be written as:

ξ =

[
u
v

]
=
λ

Z

[
X
Y

]



3. Define the interaction matrix and the image Jacobian for a vision-based robotic system, in terms of
the quantities that each of the two matrices relate.

The interaction matrix relates the linear and angular velocities of the camera to the velocity in the
image plane: [

u̇
v̇

]
= L

[
Ȯc

ωc

]
The image Jacobian relates the joint velocities of the robot to the velocity in the image plane:[

u̇
v̇

]
= JI q̇

4. Consider now the following block diagram:

Is this a look-and-move or a visual servoing scheme? A position-based or an image-based scheme?
Write an expression of the control law that can be used in this control scheme.

The scheme corresponds to a look-and-move image-based control scheme. The control law can be
written as:

q̇ = J]
I

(
ξ̇d +K(ξd − ξ)

)
+
(
I− J]

IJI

)
q̇0


