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EXERCISE 1

1. Consider the manipulator sketched in the picture, where the mass of the second link is assumed to
be concentrated at the end-effector:
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Find the expression of the inertia matrix B(q) of the manipulator.



2. Compute the matrix C(q, q̇) of the Coriolis and centrifugal terms1 for this manipulator.

3. Consider the adoption of an inverse dynamics controller for this robot: ignoring the gravitational
terms, write the equations of such controller.
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4. In order to make the control system stable even if the knowledge of the model of the robot is only
partial, what kind of control law can be used? What is a possible issue with use of such control law?

EXERCISE 2

1. Explain why for the kinematic scaling of trajectories it is possible to consider each joint separately,
while for the dynamic scaling this is not possible.

2. Consider the following equation:

τi(t) = αi (r(t)) r̈(t) + βi (r(t)) ṙ
2(t) + γi (r(t))

Explain whether such equation is used in the kinematic scaling or in the dynamic scaling and define
all symbols used in the equation.



3. Assume now that, in a robot that is not affected by gravity, trajectories have been planned such
that the torque of one joint exceeds its limit by 21% (the torques of the other joints are within their
limits). Explain how the trajectory can be scaled and what should be the scaling factor.

4. With specific reference to the following picture, define the concept of “configuration space” in the
path planning with obstacle avoidance problem.



EXERCISE 3

1. Given the kinematic model q̇ = G (q)u, where q ∈ Rn, derived from k kinematic constraints, answer
to the following questions, clearly motivating each answer:

� How many columns does matrix G (q) consist of?

� How are these columns derived from the kinematic constraints?

2. Calling α the dimension of the accessible configuration space, answer to the following questions,
clearly motivating each answer:

� For which values of α the system is controllable?

� If the system is not controllable, for which values of α the set of constraints is nonholonomic
and for which values holonomic?



3. Consider now the unicycle kinematic model. Determine the analytical expression of the vector fields
that represent a base of the accessible space and the dimension of the accessible space.

4. Considering again the unicycle kinematic model, provide a physical interpretation for the vector
fields that represent a base of the accessible space.

EXERCISE 4

1. Write the pseudocode of RRT planning algorithm.



2. Consider the 2D environment depicted in the figure below, where the black rectangles are obstacles,
the gray square is the goal region, and qs = [1, 1] is the initial node.

Randomly drawing from the configuration space gives rise to the following sequence q1 = [4, 5],
q2 = [3, 2], q3 = [6, 5], q4 = [1, 3], q5 = [5, 2], q6 = [6, 3], q7 = [3, 6], q8 = [6, 1], q9 = [2, 6],
q10 = [6, 6].
Using RRT with an exact steering function, draw the tree and write the set of nodes Q computed
by the algorithm.



3. Using the three drawn in the previous step, find a path starting from qs and ending in the goal
region, if one exists. Write the sequence of nodes representing the path and compute its length.

4. Applying RRG to the sequence of nodes reported in step 2, using constant radius for the near set
equal to 2. Which edges are added to the tree determined in that step?


