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EXERCISE 1

1. Consider the manipulator sketched in the picture, where the mass of the second link is assumed to
be concentrated at the end-effector:
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Find the expression of the inertia matrix B(q) of the manipulator.

Denavit-Hartenberg frames can be defined as sketched in this picture:
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Computations of the Jacobians:



Link 1
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j
(l1)
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0
]
=

[
z0 × (pl1 − p0) 0

]
=

 −l1s1 0
l1c1 0
0 0


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0
]
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]
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0 0
1 0
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Link 2
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]
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z0 × (pl2 − p0) z1

]
=

 −a1s1 − d2c1 −s1
a1c1 − d2s1 c1

1 0


For the above computations, we can make reference to the following picture:

x
0

y
0

J
1

d
2

a
1

z
1

and to the following auxiliary vectors:

pl1 =

 l1c1
l1s1
⋆

 ,pl2 =

 a1c1 − d2s1
a1s1 + d2c1

d1

 ,p1 =

 a1c1
a1s1
d1

 , z1 =

 −s1
c1
0


The inertia matrix can be computed now:

B(q) = m1J
(l1)T

P J
(l1)
P + I1J

(l1)T

O J
(l1)
O +m2J

(l2)T

P J
(l2)
P +

= m1

[
l21 0
0 0

]
+ I1

[
1 0
0 0

]
+m2

[
a21 + d22 a1

a1 1

]
=

[
b11 b12
b12 b22

]
where:

b11 = m1l
2
1 + I1 +m2

(
a21 + d22

)
b12 = m2a1

b22 = m2



2. Compute the matrix C(q, q̇) of the Coriolis and centrifugal terms1 for this manipulator.

The only derivative in the Christoffel symbols which is different from zero is:

∂b11
∂q2

= 2m2d2

therefore

c111 = 0 c211 = −1
2
∂b11
∂q2

= −m2d2

c112 = c121 =
1
2
∂b11
∂q2

= m2d2 c212 = c221 = 0

c112 = 0 c222 = 0

The matrix of the Coriolis and centrifugal terms is thus:

C =

[
c11 c12
c21 c22

]
where:

c11 = c111q̇1 + c112q̇2 = m2d2ḋ2

c12 = c121q̇1 + c122q̇2 = m2d2ϑ̇1

c21 = c211q̇1 + c212q̇2 = −m2d2ϑ̇1

c22 = c221q̇1 + c222q̇2 = 0

3. Write the complete dynamic model for this manipulator.

Clearly the manipulator is not affected by gravitational effects. The model is then formed by the
equation:

B (q) q̈+C (q, q̇) q̇ = τ

which corresponds to the scalar equations:

(
m1l

2
1 + I1 +m2

(
a21 + d22

))
ϑ̈1 +m2a1d̈2 + 2m2d2ϑ̇1ḋ2 = τ1

m2a1ϑ̈1 +m2d̈2 −m2d2ϑ̇
2
1 = τ2

4. Show that the model obtained in the previous step is linear with respect to a set of dynamic
parameters.

The model can be written in the form:

1The general expression of the Christoffel symbols is cijk = 1
2

(
∂bij
∂qk

+ ∂bik
∂qj

− ∂bjk
∂qi

)



Y (q, q̇, q̈)Π = τ

with:

Π =

[
m1l

2
1 + I1
m2

]
Y =

[
ϑ̈1

(
a21 + d22

)
ϑ̈1 + a1d̈2 + 2d2ϑ̇1ḋ2

0 a1ϑ̈1 + d̈2 − d2ϑ̇
2
1

]

EXERCISE 2

1. Consider an interaction task of a manipulator, with a frictionless and rigid surface, as in this picture:

Express the natural and the artificial constraints for this problem, and specify the selection matrix.

The natural constraints and artificial constraints can be easily identified:

Natural constraints Artificial constraints

f c
x ṗcx
f c
y ṗcy
ṗcz f c

z

ωc
x µc

x

ωc
y µc

y

µc
z ωc

z

The selection matrix is thus:

Σ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0





2. Sketch the block diagram of a hybrid force-position controller. What are possible sources of incon-
sistency in the adoption of such scheme?

The block diagram of a hybrid force-position controller is as follows:

Possible sources of inconsistency are friction at the contact (a force is detected in a nominally free
direction), compliance in the robot structure and/or at the contact (a displacement is detected in
a direction which is nominally constrained in motion), uncertainty in the environment geometry at
the contact.

3. Explain what an implicit force controller is and why it might be convenient with respect to an
explicit solution.

An implicit force control is closed around the position control loops. This is usually the only viable
solution to implement force control, since the reliable and industrially safe position controllers cannot
be bypassed.

4. Suppose now that along the translational z direction an implicit force controller has to be designed.
Sketch the block diagram of such controller and design it taking a bandwidth of 20 rad/s.

The block diagram of an implicit force controller in case of rigid surface is sketched in the picture:
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where R(s) is the transfer function of the position controller. If we assume a PID position controller:

R(s) =
KDs

2 +KP s+KI

s

The partial compensator of such controller is:

C(s) =
1

KDs2 +KP s+KI



If we select a PI controller on the force error:

Rf (s) = kpf +
kif
s

the loop transfer function becomes:

Lf (s) =
skpf + kif

s2

Since the high frequency approximation of such transfer function is kpf/s we can set kpf = 20 (equal
to the required bandwidth. The zero of the controller can be set at a lower frequency range, for
example kif/kpf = 2, which yields kif = 40.

EXERCISE 3

1. Consider a unicycle mobile robot. Selecting as flat outputs z1 = x and z2 = y, write the flat model
of the robot, i.e., the analytical relations from z1, z2 to x, y, θ and from z1, z2 to v, ω.

The flatness transformation for the state is given by

x = z1 y = z2 θ =


arctan

(
ż2
ż1

)
ż1 > 0

π + arctan
(
ż2
ż1

)
ż1 < 0

π
2 sign (ż2) ż1 = 0

and for the input

v =
√
ż1 + ż2 ω =

ż1z̈2 − z̈1ż2
ż1 + ż2

2. Using the flatness transformation, determine the analytic expression of a trajectory x(t), y(t) (and
the numerical values of its coefficients) that moves a unicycle robot, in an obstacle free environment,
from an initial state xi = yi = θi = 0 and vi = 0 at ti = 0, to a final state xf = yf = 5, θf = 0 and
vf = 0 at tf = 1.

Considering that we have 4 initial and 4 final conditions we can select two third order polynomials
for z1 and z2, as follows

z1(t) = a0 + a1t+ a2t
2 + a3t

3 z2(t) = b0 + b1t+ b2t
2 + b3t

3

whose first order derivatives are

ż1(t) = a1 + 2a2t+ 3a3t
2 ż2(t) = b1 + 2b2t+ 3b3t

2

Imposing the initial position and the initial velocity we get

a0 = b0 = 0 a1 = b1 = 0

Imposing now the final position and the final velocity we get

a2 + a3 = 5 b2 + b3 = 5 2a2 + 3a3 = 0 2b2 + 3b3 = 0



and solving the two systems of linear equations

a2 = b2 = 15 a3 = b3 = −10

The resulting trajectory is

x(t) = 15t2 − 10t3 y(t) = 15t2 − 10t3

3. Modify the answer to the previous step in order to introduce the minimization of the cost

J(v, ω) =

∫ Tf

0

(
v2 + 0.1ω2

)
dt

where now Tf is a free parameter. Write the analytical expression of the relations that allow to
compute the additional coefficients that must be introduced in order to enforce the minimization of
the cost function.

We can increase the order of the polynomial representing z1, obtaining

z1(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 z2(t) = b0 + b1t+ b2t

2 + b3t
3

We still have a0 = b0 = 0 and a1 = b1 = 0, consequently

z1(t) = a2t
2 + a3t

3 + a4t
4 z2(t) = b2t

2 + b3t
3

and the derivatives with respect to time are

ż1(t) = 2a2t+ 3a3t
2 + 4a4t

3 ż2(t) = 2b2t+ 3b3t
2

Imposing now the final position and the final velocity we get

a2T
2
f + a3T

3
f + a4 = 5 b2T

2
f + b3T

3
f = 5 2a2Tf + 3a3T

2
f + 4a4T

3
f = 0 2b2Tf + 3b3T

2
f = 0

We can represent these four equations in the following linear system
T 2
f T 3

f 0 0

2Tf 3T 2
f 0 0

0 0 T 2
f T 3

f

0 0 2Tf 3T 2
f



a2
a3
b2
b3

 =


5− a4
−4T 3

f a4
5
0


that can be solved obtaining a2, a3, b2, b3 as functions of a4 and Tf .
Finally, a4 and Tf can be computed enforcing the minimization of the cost function.

4. Consider now an environment with obstacles, where each obstacle can be represented by a circle
of radius Ri and center (cxi , cyi). Write the constraint that must be included in the optimization
problem considered in the previous step, in order to guarantee obstacle avoidance.

For each obstacle i of radius Ri and center (cxi , cyi), one has to include a constraint

(x− cxi)
2 + (y − cyi)

2 ≥ R2
i



EXERCISE 4
Consider the design of a trajectory tracking controller for a unicycle robot based on feedback linearization.

1. Write the analytical relations that define the coordinate transformation from the unicycle wheel
contact point to point P , i.e., the new reference point considered to solve the trajectory tracking
problem.

The analytical relations that define the coordinate transformation from the unicycle wheel contact
point to point P are given by

xP = x+ ε cos θ

yP = y + ε sin θ

where ε is the distance of point P from the unicycle wheel contact point (x, y), and θ is the robot
orientation.

2. Starting from the coordinate transformation in step 1, derive the control laws of the feedback
linearizing controller.

Taking the derivative with respect to time of the coordinate transformation we obtain

ẋP = ẋ− εθ̇ sin θ = v cos θ − εω sin θ

ẏP = ẏ + εθ̇ cos θ = v sin θ + εω cos θ

that can be rewritten in matrix form as[
ẋP
ẏP

]
=

[
cos θ −ε sin θ
sin θ ε cos θ

] [
v
ω

]
Defining vPx = ẋP , vPy = ẏP and inverting the relation we obtain the analytical expression of the
feedback linearizing controller

v = vPx cos θ + vPy sin θ

ω =
vPy cos θ − vPx sin θ

ε

3. Using the control laws derived in the previous step and the unicycle kinematic model, derive the
expression of the dynamic system representing the closed-loop system obtained connecting the lin-
earizing controller and the kinematic model.

The dynamic model representing the closed-loop system has the following expression

ẋ = vPx cos
2 θ + vPy sin θ cos θ

ẏ = vPx cos θ sin θ + vPy sin
2 θ

θ̇ =
vPy cos θ − vPx sin θ

ε



4. Draw the block diagram of the complete trajectory tracking controller, including the feedback lin-
earizing controller, the robot model, and the trajectory tracking controller. Write the equations of
the dynamic system that must be used in order to design the trajectory tracking controller.

The block diagram of the complete trajectory tracking controller is shown in the figure below.

The dynamic system that must be used in order to design the trajectory tracking controller is given
by

ẋP = vPx

ẏP = vPy


