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EXERCISE 1
Consider the manipulator sketched in the picture:
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1. Find the expression of the inertia matrix B(q) of the manipulator1

Denavit-Hartenberg frames can be defined as sketched in this picture:
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Computations of the Jacobians:
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For the above computations, we can make reference to the following picture:
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and to the following auxiliary vectors:

pl2 =

 −a1 + l2c2
0

d1 + l2s2

 ,p1 =

 −a10
d1

 , z1 =

 0
−1
0


The inertia matrix can be computed now:
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=
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b11 b12
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where:
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2. Compute the matrix C(q, q̇) of the Coriolis and centrifugal terms2 for this manipulator.

The only derivative in the Christoffel symbols which is different from zero is:

∂b12
∂q2

=
∂b21
∂q2

= −m2l2s2

therefore

c111 = 0 c211 = 0

c112 = c121 = 0 c212 = c221 = 1
2

(
∂b21
∂q2
− ∂b12

∂q2

)
= 0

c122 = 1
2

(
∂b12
∂q2

+ ∂b21
∂q2

)
= −m2l2s2 c222 = 0

The matrix of the Coriolis and centrifugal terms is thus:

C =

[
c11 c12
c21 c22

]
where:

c11 = c111q̇1 + c112q̇2 = 0

c12 = c121q̇1 + c122q̇2 = −m2l2s2ϑ̇2

c21 = c211q̇1 + c212q̇2 = 0

c22 = c221q̇1 + c222q̇2 = 0

3. Check that matrix N(q, q̇) = Ḃ(q)− 2C(q, q̇) is skew symmetric.

We have that:

N(q, q̇) = Ḃ(q)−2C(q, q̇) =

[
0 −m2l2s2ϑ̇2

−m2l2s2ϑ̇2 0

]
−2

[
0 −m2l2s2ϑ̇2
0 0

]
=

[
0 m2l2s2ϑ̇2

−m2l2s2ϑ̇2 0

]
which is a skew-symmetric matrix.

4. For a generic manipulator, ignoring the gravitational terms and exploiting the skew symmetry of
matrix N, obtain an expression of the derivative with respect to time of the kinetic energy.

The kinetic energy is:

T =
1

2
q̇TB(q)q̇

2The general expression of the Christoffel symbols is cijk =
1
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(
∂bij

∂qk
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∂bik

∂qj
−

∂bjk

∂qi

)



Its time derivative is:
dT

dt
= q̇TB(q)q̈ +

1

2
q̇T Ḃ(q)q̇

Exploiting the dynamic model we have:

dT

dt
= q̇T [−C(q, q̇) + τ ] +

1

2
q̇T Ḃ(q)q̇ =

1

2
q̇T
[
Ḃ− 2C(q, q̇)

]
q̇ + q̇T τ

Thanks to the skew symmetry of the matrix, we finally obtain:

dT

dt
= q̇T τ

EXERCISE 2 Consider a robot that uses a camera.

1. Explain what are the extrinsic and the intrinsic calibrations, making in particular reference to the
notion of camera intrinsic matrix.

The extrinsic calibration is the determination of the extrinsic parameters of the camera, like the
position and the orientation of the camera with respect to a reference frame. The intrinsic calibration
is the determination of the intrinsic parameters of the camera (like the focal length λ) as well as
of some additional parameters. The intrinsic parameters are usually organized in a matrix (camera
intrinsic matrix):

K =

 fx s cx
0 fy cy
0 0 1


where cx and cy are the coordinates of the optical center, fx and fy are the ratios between the focal
length and the size (along x and y) of the pixel, s is a skew parameter.

2. With reference to the following sketch, define what an image feature is and write the equations of
the perspective projection method.



The image feature is the coding of any information that can be retrieved from an image, for example
the two coordinates of a point in the image plane. The equations of the perspective projection can
be written as:

ξ =

[
u
v

]
=
λ

Z

[
X
Y

]

3. Define the interaction matrix and the image Jacobian for a vision-based robotic system, in terms of
the quantities that each of the two matrices relate.

The interaction matrix relates the linear and angular velocities of the camera to the velocity in the
image plane: [

u̇
v̇

]
= L

[
Ȯc

ωc

]
The image Jacobian relates the joint velocities of the robot to the velocity in the image plane:[

u̇
v̇

]
= JI q̇

4. Consider now the following block diagram:

Is this a look-and-move or a visual servoing scheme? A position-based or an image-based scheme?
Write an expression of the control law that can be used in this control scheme.

The scheme corresponds to a look-and-move image-based control scheme. The control law can be
written as:

q̇ = J]
I

(
ξ̇d +K(ξd − ξ)

)
+
(
I− J]

IJI

)
q̇0

EXERCISE 3



1. Given the kinematic constraint
q̇1 + q̇4 = 0

where q ∈ R4 is the configuration vector. Determine, using the necessary and sufficient condition,
if this constraint is holonomic or nonholonomic.

It is straightforward that this constraint is holonomic, as it is equivalent to q1 (t) + q4 (t) = c.
Applying the necessary and sufficient condition

∂α (q)

∂q2
= 0

∂α (q)

∂q3
= 0

∂α (q)

∂q4
=
∂α (q)

∂q1

0 = 0

0 =
∂α (q)

∂q2

0 =
∂α (q)

∂q3

Any function α (q) that satisfies the first three equations is a solution of this system, e.g., α (q) =
q1 + q4. The constraint is thus holonomic.

2. Given the kinematic constraint
q1q̇2 + q̇3 = 0

where q ∈ R4 is the configuration vector. Determine, using the necessary and sufficient condition,
if this constraint is holonomic or nonholonomic.

Applying the necessary and sufficient condition we obtain

0 =
∂ (α (q) q1)

∂q1
= q1

∂α (q)

∂q1
+ α (q)

0 =
∂α (q)

∂q1

The first two conditions are enough to conclude α (q) = 0, and the constraint is thus nonholonomic.

3. Is the system of constraints

q̇1 + q̇4 = 0

q1q̇2 + q̇3 = 0



holonomic or nonholonomic? Motivate the answer analysing the accessibility distribution.
Note that rank

(
AT (q)

)
= 2, and two vectors in the null space of AT (q) are

g1 (q) =


0
1
−q1

0

 g2 (q) =


1
0
0
−1



The procedure to compute the accessibility distribution is initialized with ∆1 = span {g1, g2}.
To construct ∆2 we have to add to ∆1 the vector fields obtained by the Lie bracket of all possible
combinations of the elements of ∆1, that are linearly independent with respect to g1 and g2.
The only available combination is g1, g2 giving rise to

g3 (q) = [g1, g2] =
∂g2
∂q

g1 −
∂g1
∂q

g2 = 0−


0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0




1
0
0
−1

 =


0
0
1
0


It is straightforward to check that g1, g2, and g3 are linearly independent, as a consequence ∆2 =
span {g1, g2, g3}.
Again to construct ∆3 we have to add to ∆2 the vector fields obtained by the Lie bracket of all
possible combinations including one element of ∆2 and one of ∆1, that are linearly independent
with respect to g1, g2 and g3. The available candidates are (already excluding Brackets that are
equal to 0, e.g., [g1, g1], and Brackets that are equal except for the sign, e.g. [g1, g2] and [g2, g1])

[g1, g2] [g1, g3] [g2, g3]

Excluding the first one that is already in ∆2 as g3, we can compute the second and the third

[g1, g3] =
∂g3
∂q

g1 −
∂g1
∂q

g3 = 0−


0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0




0
0
1
0

 = 0

[g2, g3] =
∂g3
∂q

g2 −
∂g2
∂q

g3 = 0

No more vectors can be added, the accessibility distribution is thus ∆A = ∆2 = span {g1, g2, g3}. As
a consequence, the accessibility space has dimension 3, that is equal to n− k, and thus the system
of constraints is holonomic.

4. Consider a mobile robot, whose configuration is represented by q ∈ R4, and whose motion is
described by the set of constraints introduced in the previous question.
Does the following kinematic model

q̇ =


0
1
−q1

0

u1 +


1
0
0
−1

u2



describe the motion of the robot? Clearly motivate the answer.

The two vectors 
0
1
−q1

0




1
0
0
−1


are two independent vectors in the null space of AT (q), the given kinematic model thus describes
the motion of the robot.

EXERCISE 4

1. The trajectory tracking controller for a robot, modelled using the bicycle kinematic model, is de-
signed exploiting the canonical simplified model. Write the relation that allows to transform the
bicycle kinematic model into the canonical simplified model.
Under which assumptions the transformation can be applied?

Assuming that the steering rate is so high that the steering angle can be changed instantaneously,
we can simplify the bicycle model reducing it to only three states. Under this assumption, applying
the following relations

v = v ω = v
tanφ

`

the bicycle model is transformed into the canonical simplified model.

2. The robot is characterised by the following actuation constraints 0 ≤ v ≤ vM and φm ≤ φ ≤ φM .
Show how these constraints can be remapped into constraints on the control variables of the canonical
simplified model.

The first constraint, i.e., 0 ≤ v ≤ vM , is already expressed with respect to a control variable of the
canonical simplified model, consequently no remapping is needed.

Consider now the second constraint, i.e., φm ≤ φ ≤ φM , thanks to the fact that the tangent function
is monotonically increasing, it can be rewritten as

tan (φm) ≤ tan (φ) ≤ tan (φM )

Substituting now the relation between tan (φ) and ω we obtain

tan (φm) ≤ ω`

v
≤ tan (φM )

and considering that the velocity is positive

v

`
tan (φm) ≤ ω ≤ v

`
tan (φM )



3. Draw the block diagram of the complete trajectory tracking controller based on the canonical sim-
plified model transformation, and write the equations representing each block.

The block diagram is reported in Figure 1.

Figure 1: Trajectory tracking controller block diagram.

The inverse canonical model transformation is described by the following relations

v = v φ = arctan

(
ω`

v

)
The feedback linearisation controller is described by the following relations

v = vxP cos θ + vyP sin θ ω =
vyP cos θ − vxP sin θ

ε

The point P transformation is described by the following relations

xP = x+ ε cos θ yP = y + ε sin θ

The trajectory tracking controller is composed of two independent P or PI regulators.

4. A more simple control solution can be devised transforming the bicycle into the canonical simpli-
fied model, and then adopting an open-loop control strategy based on the flatness transformation.
Write (and explain) the equations of the trajectory tracking controller, assuming that an analyt-
ical expression of the desired trajectory, as two functions of time, xd(t), yd(t), is available to the
controller.

If an analytical expression of the desired trajectory is available to the controller, we can assume that
all the required derivatives with respect to time are available as well.
The controller can be thus based on the flatness transformation of the unicycle kinematic model,
mapping the desired trajectory into a desired value of the control variables v and ω. The inverse
canonical model transformation is then used to compute v and φ.

The equations of the controller are the following

v =

√
ẋd2 + ẏd2

ω =
ẋdÿd − ẏdẍd

ẋd2 + ẏd2

φ = arctan

(
ω`

v

)



where ẋd, ẍd, ẏd, ÿd are the inputs, and v, φ the outputs of the controller.


