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EXERCISE 1

1. Consider the manipulator sketched in the picture:
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Find the expression of the inertia matrix B(q) of the manipulator1.

Denavit-Hartenberg frames can be defined as sketched in this picture:
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Computations of the Jacobians:
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For the above computations, we can make reference to the following picture:
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and to the following auxiliary vectors:
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The inertia matrix can be computed now:
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2. Compute the gravitational terms for this robot.

Since the vertical axis is the z0 axis pointing upwards, the gravity acceleration vector is:
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The gravitational torques are thus:
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3. Ignoring the Coriolis and centrifugal terms, write the dynamic model of the manipulator and show
that this model is linear with respect to a certain set of dynamic parameters.

Neglecting Coriolis and centrifugal terms, the dynamic model can be written as:

B(q)q̈ + g(q) = τ

The two equations that form the model are:

(m1 +m2) d̈1 −m2l2c2ϑ̈2 + (m1 +m2) g = τ1

−m2l2c2d̈1 +
(
m2l

2
2 + I2

)
ϑ̈2 −m2gl2c2 = τ2

The model can be written in the following form which is linear in the dynamic parameters:

Y (q, q̇, q̈) Π = τ

where the vector of dynamic parameters is expressed as:
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while the regressor matrix is:

Y =

[
d̈1 + g −c2ϑ̈2 0

0 −c2d̈1 − gc2 ϑ̈2

]



4. The linearity of the model in a set of dynamic parameters allows to setup experiments for the
identification of such parameters. For a generic manipulator, explain what are the variables that
need to be recorded during the experiments. With reference to the dynamic model of this exercise,
is it possible to experimentally identify the mass of the first link?

Since at each time instant the regressor matrix has to be computed, we need to record the joint
positions, velocities and accelerations, along with the joint torques.
For this specific manipulator it is not possible to identify the mass of the first link alone, we can
only estimate the sum of the masses of the two links.

EXERCISE 2

1. Explain what is the purpose of the kinematic calibration of a robot manipulator and why it is
needed.

The kinematic calibration is a process, based on a series of measurements of the manipulator’s end
effector, that allows to obtain accurate estimates of the DH parameters. It is needed because of
tolerances in mechanical building of components and in the assembly of the links and joints as well
as for possible issues in encoder mounting

2. In the kinematic calibration of a robot manipulator the following equation is used:

∆x = Φ∆ζ

Explain the meaning of each symbol used in such equation, as well as the size of the vectors.

In this equation:
∆x = xact − xnom are the deviations of the actual pose variables from the nominal ones (a 6 × 1
vector)
Φ is the calibration matrix, defined as:

Φ =
[
∂k
∂a

∂k
∂α

∂k
∂d

∂k
∂θ

]
where k is the direct kinematic function, while a, α,d, θ are the vectors of the DH parameters for
the n joints. Matrix Φ has 6 rows and 4n columns.
∆ζ are the deviations of the DH parameters and are defined as:

∆ζ =


∆a
∆α
∆d
∆θ


∆ζ is a 4n× 1 vector.



3. Based on the above equation, explain how the kinematic calibration can be performed.

The equation:

∆x = Φ∆ζ

is a system of 6 equations in 4n unknowns. We need to perform a certain number l of experiments,
each time changing the pose of the end-effector. Stacking the above equations referred to the various
poses, we have:

∆x̄ =

 ∆x1
...

∆xl

 =

 ∆Φ1
...

∆Φl

∆ζ = Φ̄∆ζ

this equation can be solved for ∆ζ in a least squares form:

∆ζ = Φ̄]∆x̄

where Φ̄] is the left pseudoinverse of matrix Φ̄.

The deviation ∆ζ is then added to the nominal values of the DH parameters ζ. The process can be
iterated until convergence under a certain threshold.

4. Consider now a kinematically redundant manipulator. Write the general solution of the inverse
kinematics at velocity level. Is the pseudoinverse matrix that appears in this equation the same
pseudoinverse of the kinematic calibration problem?

The forward kinematics at velocity level is written as:

ṙ = Jq̇

where q̇ are joint velocities, ṙ are task velocities and J is a Jacobian matrix. The solution of the
inverse kinematics is written as:

q̇ = J]ẋ +
(
I− J]J

)
q̇0

where J] is the right pseudoinverse of the Jacobian (in the kinematic calibration problem the left
pseudoinverse is used).

EXERCISE 3
Consider the following system of kinematic constraints

2q̇1 + q1q̇2 − 3q̇3 = 0

2q̇2 − q2q̇3 = 0

where q =
[
q1 q2 q3 q4

]T
.



1. Using the necessary and sufficient condition, determine if the first constraint, considered as an
independent constraint, is holonomic or nonholonomic.

Considering the first constraint

aT (q) q̇ =
[
2 q1 −3 0

]
q̇ = 0

as an independent constraint, we can write the following equalities
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∂qk
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Considering, for example, the last relation it follows that
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From the second and the fourth it follows that
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Finally, substituting this relation into the first equality one obtains

2
∂α (q)

∂q2
+ α (q) = 2

∂α (q)

∂q2

and the only solution is thus α (q) = 0. As a consequence, the first is a nonholonomic constraint.



2. Is the second constraint, considered as an independent constraint, holonomic or nonholonomic?

For the second constraint one can apply again the necessary and sufficient condition, but there is
also a simpler way.
The constraint can be rewritten as follows

2
q̇2
q2

= q̇3

Integrating each side of the constraint one obtains

2 ln q2 + c1 = q3 + c2

where c1 and c2 are arbitrary integration constants.
The second constraint is integrable and thus holonomic.

3. Assuming that AT (q) q̇ = 0 is the Pfaffian form of the system of two constraints, and

g1 (q) =


6− q1q2

2q2
4
0

 g2 (q) =


0
0
0
1


are two vectors in the null space of AT (q), demonstrate that the system of two constraints is
holonomic.

The two constraints can be rewritten in Pfaffian form as

AT (q) =

[
2 q1 −3 0
0 2 −q2 0

]
Note that AT (q) has rank 2, a base of the null space is thus composed of two vectors. g1 (q) and
g2 (q) are linearly independent and are thus a base of the null space of AT (q).

The procedure to compute the accessibility distribution is initialized with ∆1 = span {g1, g2}.
A third vector can be generated as

g3 (q) = [g1, g2] =
∂g2
∂q

g1 −
∂g1
∂q

g2 = 0−


−q2 −q1 0 0

0 2 0 0
0 0 0 0
0 0 0 0




0
0
0
1

 =


0
0
0
0


No other vector fields can be added, we conclude that the accessibility space has dimension 2, that
is equal to n− k, and thus the system of constraints is holonomic.

4. Does the following kinematic model

q̇ = g1 (q)u1 + g2 (q)u2

where g1 (q) and g2 (q) are the vectors introduced in the previous step, describe the motion of the
mobile robot characterized by the system of two constraints?



We already know that g1 (q) and g2 (q) are two linearly independent vectors in the null space of
AT (q). We can thus conclude that the kinematic model describes the motion of the mobile robot
characterized by the system of two constraints.

EXERCISE 4
Consider the design of the trajectory tracking controller of a robot described by the rear-wheel-drive
bicycle model.

1. Write the relations that allow to transform the bicycle model into the canonical simplified model.
Under which assumptions do these relations hold?

Assuming that the steering rate limit is so high that the steering angle can be changed instantan-
eously, we can simplify the bicycle model as

ẋ = v cos θ

ẏ = v sin θ

θ̇ = v
tanφ

`

where φ is the steering angle and ` the length of the bicycle.
The relations to transform the bicycle into the canonical simplified model are

v = v ω = v
tanφ

`

2. Considering a point P , located along the linear velocity vector v at a distance ε from the wheel
contact point, write the analytical expression of a feedback linearizing controller for the canonical
simplified model.

The equations of the feedback linearizing controller for the canonical simplified model are

v = vxP cos θ + vyP sin θ

ω =
vyP cos θ − vxP sin θ

ε

3. Using the transformation derived in step 1, write the analytical expression of the feedback linearizing
controller for the bicycle model using the relations of the feedback linearizing controller for the
canonical simplified model. Write the detailed procedure, not only the results.

From step 1 it follows that

v = v φ = arctan

(
ω`

v

)



Substituting now the equations of the feedback linearizing controller for the canonical simplified
model into the previous relations one obtains

v = vxP cos θ + vyP sin θ

φ = arctan

(
`

ε

vyP cos θ − vxP sin θ

vxP cos θ + vyP sin θ

)

4. Consider an implementation of the controller as a ROS node. Assuming it receives the robot actual
pose measurement as a Float64MultiArray message, where the array elements are x, y, θ, and
publishes the robot commands as a Float64MultiArray message, where the array elements are v
and φ, complete the code of the callback in order to store the actual pose in the class variables
act pose x, act pose y, act pose theta. Write the code to compute the reference velocities, vxP and
vyP , as unitary steps starting after 5 seconds, and the vehicle commands, using function

void c a n o n i c a l c o n t r o l l e r : : b i c y c l e f e e d b a c k l i n e a r i z a t i o n ( double vPx ,
double vPy , double& v , double& phi )

that is already implemented, and to publish them using an already defined publisher vehicleCom-
mand publisher.

void c a n o n i c a l c o n t r o l l e r : : veh ic l ePose MessageCa l lback ( const std msgs : :
Float64Mult iArray : : ConstPtr& msg)

{

}

void c a n o n i c a l c o n t r o l l e r : : Per iodicTask ( void )
{



}

The complete code is shown below.

void c a n o n i c a l c o n t r o l l e r : : veh ic l ePose MessageCa l lback ( const std msgs : :
Float64Mult iArray : : ConstPtr& msg)

{
a c t p o s e x = msg=>data . at (0 ) ;
a c t p o s e y = msg=>data . at (1 ) ;
a c t p o s e t h e t a = msg=>data . at (2 ) ;

}

void c a n o n i c a l c o n t r o l l e r : : Per iodicTask ( void )
{

/* Generate input commands */
double vPx , vPy ;
i f ( ro s : : Time : : now ( ) . toSec ( ) <=5.0)
{

vPx = 0 . 0 ;
vPy = 0 . 0 ;

}
e l s e
{

vPx = 1 . 0 ;
vPy = 1 . 0 ;

}

/* Compute the c o n t r o l a c t i on */
double v , phi ;
b i c y c l e f e e d b a c k l i n e a r i z a t i o n (vPx , vPy , v , phi ) ; ;

/* Publ i sh v e h i c l e commands */
std msgs : : Float64Mult iArray vehicleCommandMsg ;



vehicleCommandMsg . data . push back ( v ) ;
vehicleCommandMsg . data . push back ( phi ) ;
vehicleCommand publisher . pub l i sh ( vehicleCommandMsg ) ;

}


