
Control of industrial robots

Advanced motion planning

Prof. Paolo Rocco (paolo.rocco@polimi.it)
Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria

Control of industrial robots – Advanced motion planning – Paolo Rocco

 After reviewing the basic elements of motion planning, we will now address some more advanced
topics.

Advanced motion planning

 Specifically, we will discuss the following
problems:

• path planning with obstacle avoidance
• alternative time laws (other than

polynomial ones)
• kinematic and dynamic scaling of

trajectories
• interpolation of points

Source: RoboDK

Control of industrial robots – Advanced motion planning – Paolo Rocco

 If the robot moves in a cluttered environment, the definition of the path might be troublesome
 In fact we need a path which is collision free: such path, at the current stage of robotics practice, is

generated manually by the programmer as a sequence of motion commands

 An active research line consists in
automatic path planning, i.e. in
finding an algorithm that
autonomously generate the
geometric path, given the
kinematics of the robot and the
known positions and shapes of the
obstacles

Path planning with obstacle avoidance

Control of industrial robots – Advanced motion planning – Paolo Rocco

A common practice in robot programming is to
concatenate linear paths, and this is particularly
used to avoid obstacles.

The intermediate point between two consecutive
segments can be considered as a via point, meaning
that there is no need to pass and stop there.

During the over-fly, i.e. the passage near a via
point, the path remains always in the plane
specified by the two lines intersecting in the via
point. This means that the problem of planning the
over-fly is planar.

Concatenation of linear paths

A

B

C

𝒙𝒙 𝒚𝒚

𝒛𝒛

via point

over-fly

Control of industrial robots – Advanced motion planning – Paolo Rocco

The problem of finding a good blending between two
paths can be set in time domain.

Given:

 a constant velocity 𝑣𝑣1 in the first path
 a constant velocity 𝑣𝑣2 in the second path

find the desired transition for a time ∆𝑇𝑇 with constant
acceleration.

We will call A’ the point where the blending starts and
C’ the point where it ends.

Concatenation of linear paths

A

B

C

𝒙𝒙 𝒚𝒚

𝒛𝒛

A’
C’

Control of industrial robots – Advanced motion planning – Paolo Rocco

Let 𝒑𝒑 𝑡𝑡 =
𝑥𝑥 𝑡𝑡
𝑦𝑦 𝑡𝑡
𝑧𝑧 𝑡𝑡

be the generic point along the blending,

𝒏𝒏1 = 𝐵𝐵−𝐴𝐴
𝐵𝐵−𝐴𝐴

, 𝒏𝒏2 = 𝐶𝐶−𝐵𝐵
𝐶𝐶−𝐵𝐵

the unit vectors along the two paths.

Assuming that the transition starts at 𝑡𝑡 = 0:

Concatenation of linear paths

�̈�𝒑 𝑡𝑡 = ⁄𝑣𝑣2𝒏𝒏2 − 𝑣𝑣1𝒏𝒏1 ∆𝑇𝑇

�̇�𝒑 𝑡𝑡 = 𝑣𝑣1𝒏𝒏1 + ⁄𝑣𝑣2𝒏𝒏2 − 𝑣𝑣1𝒏𝒏1 𝑡𝑡 ∆𝑇𝑇

integrating

integrating

𝒑𝒑 𝑡𝑡 = 𝑨𝑨′ + 𝑣𝑣1𝒏𝒏1𝑡𝑡 + ⁄𝑣𝑣2𝒏𝒏2 − 𝑣𝑣1𝒏𝒏1 𝑡𝑡2 2∆𝑇𝑇 parabolic
blending

A

B

C

𝒙𝒙 𝒚𝒚

𝒛𝒛

A’
C’

𝒏𝒏𝟏𝟏

𝒏𝒏𝟐𝟐

Control of industrial robots – Advanced motion planning – Paolo Rocco

We can now find the final solution, defining the distances
𝑑𝑑1and 𝑑𝑑2 such that:

Concatenation of linear paths

𝑩𝑩 − 𝑨𝑨′ = 𝑑𝑑1𝒏𝒏1 𝑪𝑪′ − 𝑩𝑩 = 𝑑𝑑2𝒏𝒏2 𝒅𝒅𝟏𝟏
𝒅𝒅𝟐𝟐then:

𝒑𝒑 ∆𝑇𝑇 = 𝑪𝑪′ = 𝑨𝑨′ + 𝑣𝑣1𝒏𝒏1 + 𝑣𝑣2𝒏𝒏2 ⁄∆𝑇𝑇 2

𝑪𝑪′ − 𝑩𝑩 = 𝑨𝑨′ − 𝑩𝑩 + 𝑣𝑣1𝒏𝒏1 + 𝑣𝑣2𝒏𝒏2 ⁄∆𝑇𝑇 2

𝑑𝑑1𝒏𝒏1 + 𝑑𝑑2𝒏𝒏2 = 𝑣𝑣1𝒏𝒏1 + 𝑣𝑣2𝒏𝒏2 ⁄∆𝑇𝑇 2

𝑑𝑑1 = 𝑣𝑣1 ⁄∆𝑇𝑇 2 𝑑𝑑2 = 𝑣𝑣2 ⁄∆𝑇𝑇 2 If we choose 𝑑𝑑1(i.e. A’): ∆𝑇𝑇 = ⁄2𝑑𝑑1 𝑣𝑣1 𝑑𝑑2 = 𝑑𝑑1 ⁄𝑣𝑣2 𝑣𝑣1

A

B

C

𝒙𝒙 𝒚𝒚

𝒛𝒛

A’
C’

𝒏𝒏𝟏𝟏

𝒏𝒏𝟐𝟐

Control of industrial robots – Advanced motion planning – Paolo Rocco

As already mentioned, via points can be used to
avoid obstacles.

Obstacle avoidance

A

B

C

𝒙𝒙 𝒚𝒚

𝒛𝒛The end-effector has to move from A to C, however
there is an obstacle in between. A via point B is then
introduced.

Control of industrial robots – Advanced motion planning – Paolo Rocco

Robot manufacturers in some cases use circular blending rather than parabolic ones and have specific
clauses in motion commands to define the radius of the blending.
For example with ABB:

MoveL p10, v200, fine;
MoveL p20, v200, z20;
MoveL p30, v200, fine;
MoveL p40, v200, z50;
MoveL p10, v200, fine;

fine: no blending
z20: circular blending of 20 mm
z50: circular blending of 50 mm

Via points in robot programming languages

Control of industrial robots – Advanced motion planning – Paolo Rocco

 Moving now to the automatic path planning, the problem is usually addressed in the configuration space
(C-space), where the robot is at each time instant represented as a mobile point

 For an articulated robot, the common choice of the configuration space is the space of the joint variables
(joint space)

 Obstacles are mapped from the workspace to the configuration space: in case of an articulated
manipulator they take complicated shapes

Workspace C-space

We call Cfree the
subset of C-space
that does not cause
collisions with the
obstacles.
A path in C-space is
free if it is entirely
contained in Cfree

Configuration space

Control of industrial robots – Advanced motion planning – Paolo Rocco

The path planning
problem can be set as
follows in general:

WorkspaceC-space

Assume that the initial and final posture of the robot in the Workspace are mapped into corresponding
configurations in C-space, respectively a start configuration 𝐪𝐪S and a goal configuration 𝐪𝐪G.

Planning a collision-free motion for the robot means to generate a path from 𝐪𝐪S to 𝐪𝐪G if they belong to
the same connected component of Cfree, and to report a failure otherwise.

Setting the problem

Control of industrial robots – Advanced motion planning – Paolo Rocco

 The exact planning algorithms that are based on the a priori knowledge of the complete C-space are
exponential in the dimensionality of the C-space and thus hardly applicable in practice

 Probabilistic planners are instead a class of methods of remarkable efficiency, especially for high-
dimension configuration spaces

 They belong to the general family of sampling-based methods, where the basic idea is to randomly
select a finite-set of collision-free configurations that adequately represent how Cfree is connected, and
using these configurations to build a roadmap

 At each iteration a sample configuration is chosen and it is checked whether it entails a collision
between the robot and the obstacles: if yes, the configuration is discarded, otherwise it is added to the
current roadmap

 Two versions of such randomized sampling-based approach are:
 PRM (Probabilistic Roadmap)
 RRT (Rapidly-exploring Random Tree)

Probabilistic planning

With these methods there is no
need to know the shape of the
obstacles in C-space!

Control of industrial robots – Advanced motion planning – Paolo Rocco

 a random sample 𝐪𝐪rand of the C-space is selected using a uniform probability distribution
and tested for collision

 if 𝐪𝐪rand does not cause collisions it is added to a roadmap which is progressively being
formed and connected (if possible) through free local paths to sufficiently “near”
configurations already in the roadmap

 the generation of a free local path between 𝐪𝐪rand and a near configuration 𝐪𝐪near is made by
a procedure called local planner

 the iterations terminate when either a maximum number of iterations has been reached or
the number of connected components in the roadmap becomes smaller than a given
threshold

 then we try to verify whether the path panning problem can be satisfied by connecting 𝐪𝐪S
and 𝐪𝐪G to the same connected component of the PRM by free local paths

PRM (Probabilistic roadmap)

Control of industrial robots – Advanced motion planning – Paolo Rocco

This picture is taken from the textbook:

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo:
Robotics: Modelling, Planning and Control, 3rd
Ed.
Springer, 2009

PRM (Probabilistic roadmap)

Control of industrial robots – Advanced motion planning – Paolo Rocco

Advantages of PRM:
 it is remarkably fast in finding solutions to motion planning problems
 as already mentioned, there is no need to generate the obstacles in C-space

Disadvantages of PRM:
 it is only probabilistically complete: the probability to find a solution to the planning

problem, if it exists, tends to 1 as the execution time tends to infinity

PRM (Probabilistic roadmap)

Control of industrial robots – Advanced motion planning – Paolo Rocco

 the method makes use of a data structure called tree
 a random sample 𝐪𝐪rand of the C-space is selected using a uniform probability distribution
 the configuration 𝐪𝐪near in the tree T (which is progressively formed) that is the closest one to
𝐪𝐪rand is found and a new candidate configuration 𝐪𝐪new is produced on the segment joining
𝐪𝐪near to 𝐪𝐪rand at a predefined distance δ from 𝐪𝐪near

 it is checked that both 𝐪𝐪new and the segment joining 𝐪𝐪near to 𝐪𝐪new belong to Cfree

 if this is true, the tree T is expanded by incorporating 𝐪𝐪new and the said segment
 to speed up the search, two trees are expanded, rooted at 𝐪𝐪S and 𝐪𝐪G, respectively
 at each iteration, both trees are expanded with the randomized procedure
 after a certain number of expansion steps, the algorithm tries to connect the two trees and

thus to complete the path

RRT (Rapidly-exploring random trees)

Control of industrial robots – Advanced motion planning – Paolo Rocco

This picture is taken from the textbook:

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo:
Robotics: Modelling, Planning and Control, 3rd
Ed.
Springer, 2009

RRT (Rapidly-exploring random trees)

Control of industrial robots – Advanced motion planning – Paolo Rocco

 the RRT expansion technique, though simple, results in a very efficient exploration of the C-
space, since the procedure for generating new candidate configurations is intrinsically biased
towards regions in Cfree that have not been visited yet

 as in the PRM method, there is no need to generate the obstacles in C-space
 like the PRM method, it is only probabilistically complete

Example of path
generated with a
RRT algorithm

RRT (Rapidly-exploring random trees)

Control of industrial robots – Advanced motion planning – Paolo Rocco

Ample free space Cluttered space Narrow passages

RRT (Rapidly-exploring random trees)

Control of industrial robots – Advanced motion planning – Paolo Rocco

RRT (Rapidly-exploring random trees)

Control of industrial robots – Advanced motion planning – Paolo Rocco

 in the artificial potential method, the motion of the point that represents the robot in C-
space is influenced by a potential field 𝑈𝑈

 this field is obtained as the superposition of an attractive potential to the goal and a
repulsive potential from the obstacles.

 at each configuration 𝐪𝐪 the artificial force generated by the potential is defined as the
negative gradient −∇𝑈𝑈 𝐪𝐪 of the potential

paraboloid potential conic potential

The method is particularly used in online path planning

This picture is taken from the textbook:

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo:
Robotics: Modelling, Planning and Control, 3rd
Ed.
Springer, 2009

local minima!

Artificial potentials

Control of industrial robots – Advanced motion planning – Paolo Rocco

 We have reviewed polynomial time laws and
trapezoidal velocity profiles to solve the problem
of trajectory generation

 In fact there are several alternative methods to
solve the same problem

 Here we will address harmonic trajectories and
cycloidal trajectories

Alternative definitions of time laws

t

q

ti

qi

?
tf

qf

Control of industrial robots – Advanced motion planning – Paolo Rocco

The harmonic trajectory generalizes the equation of a harmonic motion, where the
acceleration is proportional to the position, with opposite sign. A harmonic trajectory has
continuous derivatives of all orders in all the internal points of the trajectory.

The equations are:

𝑞𝑞 𝑡𝑡 =
𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖

2 1 − cos
𝜋𝜋 𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

+ 𝑞𝑞𝑖𝑖

�̇�𝑞 𝑡𝑡 =
𝜋𝜋 𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖
2 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

sin
𝜋𝜋 𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

�̈�𝑞 𝑡𝑡 =
𝜋𝜋2 𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖
2 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

2 cos
𝜋𝜋 𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

𝑞𝑞 𝑡𝑡𝑖𝑖 = 𝑞𝑞𝑖𝑖 , 𝑞𝑞 𝑡𝑡𝑓𝑓 = 𝑞𝑞𝑓𝑓

�̇�𝑞 𝑡𝑡𝑖𝑖 = 0, �̇�𝑞 𝑡𝑡𝑓𝑓 = 0

Harmonic trajectory

P

P’

The harmonic trajectory
corresponds to the motion of
the projection P’ of a point P
moving along a circle with
constant angular velocity

Control of industrial robots – Advanced motion planning – Paolo Rocco

𝑡𝑡𝑖𝑖 = 0, 𝑡𝑡𝑓𝑓 = 1 𝑠𝑠,

𝑞𝑞𝑖𝑖 = 10°, 𝑞𝑞𝑓𝑓 = 30°

-0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

de
g

Position

-0.2 0 0.2 0.4 0.6 0.8 1
-10

0

10

20

30

40

t(s)

de
g/

s

Velocity

-0.2 0 0.2 0.4 0.6 0.8 1
-150

-100

-50

0

50

100

150

t(s)

de
g/

s2
Acceleration

Harmonic trajectory (example)

Control of industrial robots – Advanced motion planning – Paolo Rocco

The harmonic trajectory has discontinuities in the acceleration in the initial and final
instants, and then undefined (or infinite) values of jerk. An alternative is the cycloidal
trajectory, which is continuous in the acceleration, too.

Here are the equations:

𝑞𝑞 𝑡𝑡 = 𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖
𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

−
1
2𝜋𝜋 sin

2𝜋𝜋 𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

+ 𝑞𝑞𝑖𝑖

�̇�𝑞 𝑡𝑡 =
𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

1 − cos
2𝜋𝜋 𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

�̈�𝑞 𝑡𝑡 =
2𝜋𝜋 𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

2 sin
2𝜋𝜋 𝑡𝑡 − 𝑡𝑡𝑖𝑖
𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖

𝑞𝑞 𝑡𝑡𝑖𝑖 = 𝑞𝑞𝑖𝑖 , 𝑞𝑞 𝑡𝑡𝑓𝑓 = 𝑞𝑞𝑓𝑓

�̇�𝑞 𝑡𝑡𝑖𝑖 = 0, �̇�𝑞 𝑡𝑡𝑓𝑓 = 0

�̈�𝑞 𝑡𝑡𝑖𝑖 = 0, �̈�𝑞 𝑡𝑡𝑓𝑓 = 0

Cycloidal trajectory

P

P’

The cycloidal trajectory
corresponds to the motion of
the projection P’ of a point P
moving along a circle with
constant angular velocity,
when the circle advances with
linear velocity

Control of industrial robots – Advanced motion planning – Paolo Rocco

𝑡𝑡𝑖𝑖 = 0, 𝑡𝑡𝑓𝑓 = 1 𝑠𝑠,

𝑞𝑞𝑖𝑖 = 10°, 𝑞𝑞𝑓𝑓 = 30°

-0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

de
g

Position

-0.2 0 0.2 0.4 0.6 0.8 1
-10

0

10

20

30

40

t(s)

de
g/

s

Velocity

-0.2 0 0.2 0.4 0.6 0.8 1
-150

-100

-50

0

50

100

150

t(s)

de
g/

s2

Acceleration

Cycloidal trajectory (example)

Control of industrial robots – Advanced motion planning – Paolo Rocco

Once a trajectory has been planned, it is often necessary to scale it in order to satisfy the
constraints on the actuation system, which emerge in terms of saturations.
In particular we will consider:

 Kinematic scaling of the trajectory is relevant for those trajectory profiles (cubic, harmonic, …) for
which such values are not assigned in the planning itself.

 For kinematic scaling we can proceed joint by joint (no coupling effects)
 For dynamic scaling we will need to consider the whole coupled model of the robot

1. Kinematic scaling: the trajectory needs satisfy the constraints on the
maximum velocity and acceleration

2. Dynamic scaling: the trajectory needs satisfy the constraints on the maximum
achievable torques/forces by the actuators

Trajectory scaling

Control of industrial robots – Advanced motion planning – Paolo Rocco

In order to kinematically scale the trajectory it is convenient to express it in a parametric form, as
a function of a suitably normalized parameter 𝜎𝜎 = 𝜎𝜎 𝑡𝑡 .
Given the trajectory 𝑞𝑞 𝑡𝑡 , defined between points 𝑞𝑞𝑖𝑖 and 𝑞𝑞𝑓𝑓 with a travel time of 𝑇𝑇 = 𝑡𝑡𝑓𝑓 − 𝑡𝑡𝑖𝑖 , its
expression in normalized form is as follows:

𝑞𝑞 𝑡𝑡 = 𝑞𝑞𝑖𝑖 + ℎ𝜎𝜎 𝜏𝜏 with ℎ = 𝑞𝑞𝑓𝑓 − 𝑞𝑞𝑖𝑖 , 0 ≤ 𝜎𝜎 𝜏𝜏 ≤ 1, 𝜏𝜏 = 𝑡𝑡−𝑡𝑡𝑖𝑖
𝑇𝑇

, 0 ≤ 𝜏𝜏 ≤ 1

It follows:
Maximum values of velocity, acceleration, etc., are obtained in
correspondence to the maximum values of functions 𝜎𝜎 𝑖𝑖 𝜏𝜏 :
by modifying the travel time 𝑻𝑻 of the trajectory it is possible to satisfy
the constraints on the kinematic saturations.

(normalized time)

Trajectory normalization

𝑑𝑑𝑞𝑞 𝑡𝑡
𝑑𝑑𝑡𝑡 =

ℎ
𝑇𝑇 𝜎𝜎

′ 𝜏𝜏

𝑑𝑑2𝑞𝑞 𝑡𝑡
𝑑𝑑𝑡𝑡2 =

ℎ
𝑇𝑇2 𝜎𝜎

′′ 𝜏𝜏
⋮

𝑑𝑑𝑛𝑛𝑞𝑞 𝑡𝑡
𝑑𝑑𝑡𝑡𝑛𝑛 =

ℎ
𝑇𝑇𝑛𝑛 𝜎𝜎

𝑛𝑛 𝜏𝜏

Control of industrial robots – Advanced motion planning – Paolo Rocco

This trajectory can be parameterized with the polynomial:

𝜎𝜎 𝜏𝜏 = 𝑎𝑎0 + 𝑎𝑎1𝜏𝜏 + 𝑎𝑎2𝜏𝜏2 + 𝑎𝑎3𝜏𝜏3

from which:

Assigning the boundary conditions 𝜎𝜎′ 0 = 0,𝜎𝜎′ 1 = 0 (besides 𝜎𝜎 0 = 0,𝜎𝜎 1 = 1):

𝑎𝑎0 = 0, 𝑎𝑎1 = 0, 𝑎𝑎2 = 3, 𝑎𝑎3 = −2

𝜎𝜎 𝜏𝜏 = 3𝜏𝜏2 − 2𝜏𝜏3 𝜎𝜎″ 𝜏𝜏 = 6 − 12𝜏𝜏
𝜎𝜎′ 𝜏𝜏 = 6𝜏𝜏 − 6𝜏𝜏2 𝜎𝜎‴ 𝜏𝜏 = −12

Maximum values of velocity and acceleration are then:

𝜎𝜎′max = 𝜎𝜎′ 0.5 =
3
2

⇒ �̇�𝑞max =
3ℎ
2𝑇𝑇

𝜎𝜎″max = 𝜎𝜎″ 0 = 6 ⇒ �̈�𝑞max =
6ℎ
𝑇𝑇2

Polynomial trajectory of degree 3

Control of industrial robots – Advanced motion planning – Paolo Rocco

𝜎𝜎 𝜏𝜏 = 𝑎𝑎0 + 𝑎𝑎1𝜏𝜏 + 𝑎𝑎2𝜏𝜏2 + 𝑎𝑎3𝜏𝜏3 + 𝑎𝑎4𝜏𝜏4 + 𝑎𝑎5𝜏𝜏5

from which:

Assigning boundary conditions 𝜎𝜎 0 = 0,𝜎𝜎 1 = 1, 𝜎𝜎′ 0 = 0,𝜎𝜎′ 1 = 0, 𝜎𝜎″ 0 = 0,𝜎𝜎″ 1 = 0:

𝑎𝑎0 = 0, 𝑎𝑎1 = 0, 𝑎𝑎2 = 0, 𝑎𝑎3 = 10, 𝑎𝑎4 = −15, 𝑎𝑎5 = 6

𝜎𝜎 𝜏𝜏 = 10𝜏𝜏3 − 15𝜏𝜏4 + 6𝜏𝜏5 𝜎𝜎″ 𝜏𝜏 = 60𝜏𝜏 − 180𝜏𝜏2 + 120𝜏𝜏3

𝜎𝜎′ 𝜏𝜏 = 30𝜏𝜏2 − 60𝜏𝜏3 + 30𝜏𝜏4 𝜎𝜎‴ 𝜏𝜏 = 60 − 360𝜏𝜏 + 360𝜏𝜏2

𝜎𝜎′max = 𝜎𝜎′ 0.5 =
15
8

⇒ �̇�𝑞max =
15ℎ
8𝑇𝑇

𝜎𝜎″max = 𝜎𝜎″ 0.2123 =
10 3

3
⇒ �̈�𝑞max =

10 3ℎ
3𝑇𝑇2

This trajectory can be parameterized with the polynomial:

Maximum values of velocity and
acceleration are then:

Polynomial trajectory of degree 5

Control of industrial robots – Advanced motion planning – Paolo Rocco

𝜎𝜎 𝜏𝜏 =
1
2

1 − cos 𝜋𝜋𝜏𝜏

from which: 𝜎𝜎′ 𝜏𝜏 =
𝜋𝜋
2

sin 𝜋𝜋𝜏𝜏

𝜎𝜎″ 𝜏𝜏 =
𝜋𝜋2

2
cos 𝜋𝜋𝜏𝜏

𝜎𝜎‴ 𝜏𝜏 =
𝜋𝜋3

2
sin 𝜋𝜋𝜏𝜏

𝜎𝜎′max = 𝜎𝜎′ 0.5 =
𝜋𝜋
2

⇒ �̇�𝑞max =
𝜋𝜋ℎ
2𝑇𝑇

𝜎𝜎″max = 𝜎𝜎″ 0 =
𝜋𝜋2

2
⇒ �̈�𝑞max =

𝜋𝜋2ℎ
2𝑇𝑇2

This trajectory can be parameterized with the function:

Maximum values of velocity and
acceleration are then:

Harmonic trajectory

Control of industrial robots – Advanced motion planning – Paolo Rocco

𝜎𝜎 𝜏𝜏 = 𝜏𝜏 −
1
2𝜋𝜋

sin 2𝜋𝜋𝜏𝜏
from which:

𝜎𝜎′ 𝜏𝜏 = 1 − cos 2𝜋𝜋𝜏𝜏
𝜎𝜎″ 𝜏𝜏 = 2𝜋𝜋 sin 2𝜋𝜋𝜏𝜏
𝜎𝜎‴ 𝜏𝜏 = 4𝜋𝜋2 cos 2𝜋𝜋𝜏𝜏

𝜎𝜎′max = 𝜎𝜎′ 0.5 = 2 ⇒ �̇�𝑞max = 2
ℎ
𝑇𝑇

𝜎𝜎″max = 𝜎𝜎″ 0.25 = 2𝜋𝜋 ⇒ �̈�𝑞max = 2𝜋𝜋
ℎ
𝑇𝑇2

This trajectory can be parameterized with the function:

Maximum values of velocity and
acceleration are then:

Cycloidal trajectory

Control of industrial robots – Advanced motion planning – Paolo Rocco

We want to design a trajectory with
𝑞𝑞𝑖𝑖 = 10°, 𝑞𝑞𝑓𝑓 = 50°,

for an actuator characterized by
�̇�𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 30 ⁄° 𝑠𝑠 , �̈�𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 80 ⁄° 𝑠𝑠2.

The results reported in the table
can be obtained (ℎ = 40°).

667.2
772.1

80
2

667.2
30
2

2

2
Cycloidal

094.2
571.1

160

094.2
60

2

2Harmonic

5.2
699.1

240
310

5.2
240
15

3
310

8
15

degree 5th Polin.

2
732.1

80
6

2
60
3

6
2
3

degree 3rd Polin.

sConstraintFormulasTrajectory

2max

max

2

2

2

max

max

2max

max

2max

max

min

=
π

=

==

π=

=

=
π

=

=
π

=

π
=

π
=

==

==

=

=

==

==

=

=

hT

hT

T
hq

T
hq

hT

hT

T
hq

T
hq

hT

hT

T
hq

T
hq

hT

hT

T
hq
T
hq

T

fast

fast

Kinematic scaling: an example

The fastest profiles are those with
discontinuous acceleration at the
beginning and at the end.

Control of industrial robots – Advanced motion planning – Paolo Rocco

We will discuss the dynamic scaling technique making reference directly to the model of the
robotic manipulator (neglecting friction effects):

𝐁𝐁 𝐪𝐪 �̈�𝐪 + 𝐂𝐂 𝐪𝐪, �̇�𝐪 �̇�𝐪 + 𝐠𝐠 𝐪𝐪 = τ

For each joint an equation of the following kind holds:

𝐁𝐁𝑖𝑖𝑇𝑇 𝐪𝐪 �̈�𝐪 +
1
2
�̇�𝐪𝑇𝑇𝐂𝐂𝑖𝑖 𝐪𝐪 �̇�𝐪 + 𝑔𝑔𝑖𝑖 𝐪𝐪 = 𝜏𝜏𝑖𝑖 𝑖𝑖 = 1, … ,𝑛𝑛

where 𝐂𝐂𝑖𝑖 𝐪𝐪 is a suitable matrix.

Let us consider a parameterization of the trajectory in terms of a scalar function:

𝐪𝐪 = 𝐪𝐪 𝑟𝑟 , 𝑟𝑟 = 𝑟𝑟 𝑡𝑡

Then: �̇�𝐪 =
𝑑𝑑𝐪𝐪
𝑑𝑑𝑟𝑟

�̇�𝑟, �̈�𝐪 =
𝑑𝑑2𝐪𝐪
𝑑𝑑𝑟𝑟2

�̇�𝑟2 +
𝑑𝑑𝐪𝐪
𝑑𝑑𝑟𝑟

�̈�𝑟

(this means that all the joint positions
depend on the time in the same way)

Dynamic scaling

Control of industrial robots – Advanced motion planning – Paolo Rocco

By substituting in the dynamic equation of the 𝑖𝑖𝑡𝑡𝑡 joint we have:

i.e. an equation in the form:

𝐁𝐁𝑖𝑖𝑇𝑇 𝐪𝐪 𝑟𝑟
𝑑𝑑𝐪𝐪
𝑑𝑑𝑟𝑟

�̈�𝑟 + 𝐁𝐁𝑖𝑖𝑇𝑇 𝐪𝐪 𝑟𝑟
𝑑𝑑2𝐪𝐪
𝑑𝑑𝑟𝑟2

+
1
2
𝑑𝑑𝐪𝐪𝑇𝑇

𝑑𝑑𝑟𝑟
𝐂𝐂𝑖𝑖 𝐪𝐪 𝑟𝑟

𝑑𝑑𝐪𝐪
𝑑𝑑𝑟𝑟

�̇�𝑟2 + 𝑔𝑔𝑖𝑖 𝐪𝐪 𝑟𝑟 = 𝜏𝜏𝑖𝑖

Observe that γi depends on the position only (and not on the velocity).

𝛼𝛼𝑖𝑖 𝑟𝑟 �̈�𝑟 + 𝛽𝛽𝑖𝑖 𝑟𝑟 �̇�𝑟2 + 𝛾𝛾𝑖𝑖 𝑟𝑟 = 𝜏𝜏𝑖𝑖

Torques needed to execute the motion are thus:

𝜏𝜏𝑖𝑖 𝑡𝑡 = 𝛼𝛼𝑖𝑖 𝑟𝑟 𝑡𝑡 �̈�𝑟 𝑡𝑡 + 𝛽𝛽𝑖𝑖 𝑟𝑟 𝑡𝑡 �̇�𝑟2 𝑡𝑡 + 𝛾𝛾𝑖𝑖 𝑟𝑟 𝑡𝑡 , 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑡𝑡 ∈ 0,𝑇𝑇

Dynamic scaling

Control of industrial robots – Advanced motion planning – Paolo Rocco

In order to obtain a different parameterization of the trajectory, consider now a time scaling, for
instance a linear one:

We obtain:

 If 𝑘𝑘 > 1 the scaled trajectory is slower

 If 𝑘𝑘 < 1 the scaled trajectory is faster

𝑟𝑟 𝑡𝑡 = �̂�𝑟 θ , �̇�𝑟 𝑡𝑡 = 𝑘𝑘�̂�𝑟′ θ , �̈�𝑟 𝑡𝑡 = 𝑘𝑘2�̂�𝑟″ θ

θ = 𝑘𝑘𝑡𝑡 θ ∈ 0, 𝑘𝑘𝑇𝑇

where ()′ stands for derivative with respect to θ.

we change the time scale and
consider a new time θ

t0

0

T

θ kT

Dynamic scaling

Compared with the time scaling used for
kinematic scaling, here we are not using
symbol τ (to avoid confusion with torques),
we are assuming 𝑡𝑡𝑖𝑖 = 0, and we are
assuming a more general scaling (𝑘𝑘 = ⁄1 𝑇𝑇
in kinematic scaling)

Control of industrial robots – Advanced motion planning – Paolo Rocco

With the new parameterization, the torques become:

𝜏𝜏𝑖𝑖 θ = 𝛼𝛼𝑖𝑖 �̂�𝑟 θ �̂�𝑟″ θ + 𝛽𝛽𝑖𝑖 �̂�𝑟 θ �̂�𝑟′2 θ + 𝛾𝛾𝑖𝑖 �̂�𝑟 θ =

= 𝛼𝛼𝑖𝑖 𝑟𝑟 𝑡𝑡
�̈�𝑟 𝑡𝑡
𝑘𝑘2

+ 𝛽𝛽𝑖𝑖 𝑟𝑟 𝑡𝑡
�̇�𝑟2 𝑡𝑡
𝑘𝑘2

+ 𝛾𝛾𝑖𝑖 𝑟𝑟 𝑡𝑡 =

=
1
𝑘𝑘2

𝛼𝛼𝑖𝑖 𝑟𝑟 𝑡𝑡 �̈�𝑟 𝑡𝑡 + 𝛽𝛽𝑖𝑖 𝑟𝑟 𝑡𝑡 �̇�𝑟2 𝑡𝑡 + 𝛾𝛾𝑖𝑖 𝑟𝑟 𝑡𝑡 =

=
1
𝑘𝑘2

𝜏𝜏𝑖𝑖 𝑡𝑡 − 𝑔𝑔𝑖𝑖 𝑟𝑟 𝑡𝑡 + 𝑔𝑔𝑖𝑖 𝑟𝑟 𝑡𝑡

Then: 𝜏𝜏𝑖𝑖 θ − 𝑔𝑔𝑖𝑖 θ =
1
𝑘𝑘2

𝜏𝜏𝑖𝑖 𝑡𝑡 − 𝑔𝑔𝑖𝑖 𝑡𝑡

Dynamic scaling

𝜏𝜏𝑖𝑖 𝑡𝑡 = 𝛼𝛼𝑖𝑖 𝑟𝑟 𝑡𝑡 �̈�𝑟 𝑡𝑡 + 𝛽𝛽𝑖𝑖 𝑟𝑟 𝑡𝑡 �̇�𝑟2 𝑡𝑡 + 𝛾𝛾𝑖𝑖 𝑟𝑟 𝑡𝑡 , 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑡𝑡 ∈ 0,𝑇𝑇

Control of industrial robots – Advanced motion planning – Paolo Rocco

 With a new parameterization of the trajectory it is not necessary to compute again the dynamics of
the system

 New torques are obtained, apart from the gravitational term (which does not depend on the
parameterization), multiplying the torques obtained with the original trajectory by the factor ⁄1 𝑘𝑘2

 The travel time of the new trajectory is 𝑘𝑘𝑇𝑇

𝜏𝜏𝑖𝑖 θ − 𝑔𝑔𝑖𝑖 θ =
1
𝑘𝑘2

𝜏𝜏𝑖𝑖 𝑡𝑡 − 𝑔𝑔𝑖𝑖 𝑡𝑡

Dynamic scaling

t0

0

T

θ kT
0 rmax

q

q=q(r)

r

Control of industrial robots – Advanced motion planning – Paolo Rocco

Consider a two d.o.f. manipulator subjected to a trajectory which generates the following torques:

t
U1

−U1

t
U2

−U2

τ1 τ2 To scale the trajectory we compute the
value:

𝑘𝑘2 = max 1,
𝜏𝜏1
𝑈𝑈1

,
𝜏𝜏2
𝑈𝑈2

≥ 1

New torques will be realizable (𝜏𝜏 θ = ⁄𝜏𝜏 𝑡𝑡 𝑘𝑘2) and at least one of them will saturate in one
point.
Scaling the trajectory in order to avoid that the torque exceeds the maximum value in a given
interval may excessively slow down the execution: we can resort in this case to a variable scaling
(i.e. applied only in those intervals where there is torque saturation).

Dynamic scaling: example

Control of industrial robots – Advanced motion planning – Paolo Rocco

So far we have considered conditions only on the initial and final points of the trajectory.
We will now consider the more general situation where intermediate points have to be interpolated at given
instants:

𝑡𝑡1
𝑡𝑡2
⋮

𝑡𝑡𝑛𝑛−1
𝑡𝑡𝑛𝑛

⇒

𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞𝑛𝑛−1
𝑞𝑞𝑛𝑛

Interpolation of points

Control of industrial robots – Advanced motion planning – Paolo Rocco

The problem of finding a trajectory that passes through 𝑛𝑛 points can be solved adopting a polynomial function
of degree 𝑛𝑛 − 1:

𝐐𝐐 =

𝑞𝑞1
𝑞𝑞2
⋮

𝑞𝑞𝑛𝑛−1
𝑞𝑞𝑛𝑛

=

1 𝑡𝑡1 ⋯ 𝑡𝑡1𝑛𝑛−1

1 𝑡𝑡2 ⋯ 𝑡𝑡2𝑛𝑛−1

⋮
1 𝑡𝑡𝑛𝑛−1 ⋯ 𝑡𝑡𝑛𝑛−1𝑛𝑛−1

1 𝑡𝑡𝑛𝑛 ⋯ 𝑡𝑡𝑛𝑛𝑛𝑛−1

𝑎𝑎0
𝑎𝑎1
⋮

𝑎𝑎𝑛𝑛−2
𝑎𝑎𝑛𝑛−1

= 𝐓𝐓𝐓𝐓

Given the values 𝑡𝑡𝑖𝑖, 𝑞𝑞𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑛𝑛 vectors 𝐐𝐐, 𝐓𝐓 and matrix 𝐓𝐓 (Vandermonde matrix) are built as:

It follows: 𝐓𝐓 = 𝐓𝐓−1𝐐𝐐 (matrix 𝐓𝐓 is always invertible if 𝑡𝑡𝑖𝑖 > 𝑡𝑡𝑖𝑖−1, 𝑖𝑖 = 1,⋯ ,𝑛𝑛)

Interpolation with a polynomial

𝑞𝑞 𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + ⋯+ 𝑎𝑎𝑛𝑛−1𝑡𝑡𝑛𝑛−1

Control of industrial robots – Advanced motion planning – Paolo Rocco

-2 0 2 4 6 8 10 12
-10

0

10

20

30

40

50

de
g

Position

-2 0 2 4 6 8 10 12
-20

-10

0

10

20

30

t(s)

de
g/

s

Velocity

-2 0 2 4 6 8 10 12
-40

-30

-20

-10

0

10

t(s)

de
g/

s2

Acceleration

𝑡𝑡1 = 0 𝑡𝑡2 = 2 𝑡𝑡3 = 4 𝑡𝑡4 = 8 𝑡𝑡5 = 10
𝑞𝑞1 = 10° 𝑞𝑞2 = 20° 𝑞𝑞3 = 0° 𝑞𝑞4 = 30° 𝑞𝑞5 = 40°

Interpolation with a polynomial

Control of industrial robots – Advanced motion planning – Paolo Rocco

A clear advantage of the polynomial interpolation is that function 𝑞𝑞 𝑡𝑡 has continuous derivatives of all
the orders inside the interval 𝑡𝑡1 𝑡𝑡𝑛𝑛 .

However the method is not efficient from a numerical point of view: as the number 𝑛𝑛 of points
increases, the condition number 𝑘𝑘 (ratio between the maximum and minimum eigenvalue) of the
Vandermonde matrix 𝐓𝐓 increases too, making the inversion problem numerically ill-conditioned.

If, for example, 𝑡𝑡𝑖𝑖 = 𝑖𝑖
𝑛𝑛

, 𝑖𝑖 = 1,⋯ ,𝑛𝑛) :

Other, more efficient, methods exist to compute the coefficients of the polynomial, however the
numerical difficulties stand for high values of 𝑛𝑛.

16117 10139.110032.410519.137.492443.68687.981.15

2015106543

⋅⋅⋅k

n

Interpolation with a polynomial

Control of industrial robots – Advanced motion planning – Paolo Rocco

Regardless the numerical difficulties, the interpolation of 𝑛𝑛 points with only one polynomial of degree
𝑛𝑛 − 1 has other disadvantages:

1. the degree of the polynomial depends on 𝑛𝑛 and, for large values of 𝑛𝑛, the amount of computations
might be remarkable;

2. changing a single point 𝑡𝑡𝑖𝑖 ,𝑞𝑞𝑖𝑖 implies to compute again the entire polynomial;
3. adding a final point 𝑡𝑡𝑛𝑛+1,𝑞𝑞𝑛𝑛+1 implies the use of a higher degree polynomial and thus the

computation of all the coefficients;
4. the obtained solution in general presents undesired oscillations

An alternative solution, instead of using a single polynomial of degree 𝑛𝑛 − 1, is to use 𝑛𝑛 − 1 polynomials
of degree 𝑝𝑝 (typically lower), each of which defined in an interval of the trajectory.
The degree 𝑝𝑝 of the polynomials is usually equal to 3 (pieces of cubic trajectories).
A first, and obvious, way to proceed is to assign positions and velocities in all the points and then to
compute the coefficients of the cubic polynomials between two consecutive points.

Interpolation with a polynomial

Control of industrial robots – Advanced motion planning – Paolo Rocco

-2 0 2 4 6 8 10 12
-10

0

10

20

30

40

50

de
g

Position

-2 0 2 4 6 8 10 12
-20

-10

0

10

20

t(s)

de
g/

s

Velocity

-2 0 2 4 6 8 10 12
-40

-20

0

20

40

t(s)

de
g/

s2

Acceleration

𝑡𝑡1 = 0 𝑡𝑡2 = 2 𝑡𝑡3 = 4 𝑡𝑡4 = 8 𝑡𝑡5 = 10
𝑞𝑞1 = 10° 𝑞𝑞2 = 20° 𝑞𝑞3 = 0° 𝑞𝑞4 = 30° 𝑞𝑞5 = 40°
�̇�𝑞1 = 0°/𝑠𝑠 �̇�𝑞2 = −10°/𝑠𝑠 �̇�𝑞3 = 10°/𝑠𝑠 �̇�𝑞4 = 3°/𝑠𝑠 �̇�𝑞5 = 0°/𝑠𝑠

Interpolation with cubics

Control of industrial robots – Advanced motion planning – Paolo Rocco

If only the intermediate positions are specified, and not the intermediate velocities, these can be
assigned with rules like:

�̇�𝑞1 = 0

�̇�𝑞𝑘𝑘 = �
0 sign 𝑅𝑅𝑘𝑘 ≠ sign 𝑅𝑅𝑘𝑘+1

𝑅𝑅𝑘𝑘 + 𝑅𝑅𝑘𝑘+1
2

sign 𝑅𝑅𝑘𝑘 = sign 𝑅𝑅𝑘𝑘+1
�̇�𝑞𝑛𝑛 = 0

where:

𝑅𝑅𝑘𝑘 =
𝑞𝑞𝑘𝑘 − 𝑞𝑞𝑘𝑘−1
𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1

is the slope in the interval 𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘

Interpolation with cubics

At an intermediate point, if the slopes before and
after have different signs, we set zero velocity at
that point, otherwise we assign a velocity which is
the average of the two slopes.

Control of industrial robots – Advanced motion planning – Paolo Rocco

-2 0 2 4 6 8 10 12
-10

0

10

20

30

40

50

de
g

Position

-2 0 2 4 6 8 10 12
-20

-10

0

10

20

t(s)

de
g/

s

Velocity

-2 0 2 4 6 8 10 12
-30

-20

-10

0

10

20

30

t(s)

de
g/

s2

Acceleration

𝑡𝑡1 = 0 𝑡𝑡2 = 2 𝑡𝑡3 = 4 𝑡𝑡4 = 8 𝑡𝑡5 = 10
𝑞𝑞1 = 10° 𝑞𝑞2 = 20° 𝑞𝑞3 = 0° 𝑞𝑞4 = 30° 𝑞𝑞5 = 40°

Interpolation with cubics

Control of industrial robots – Advanced motion planning – Paolo Rocco

The interpolation with cubic polynomials generates a trajectory which presents a discontinuity in the
acceleration in the intermediate points.

In order to avoid this problem, while keeping cubic interpolation, we must avoid to assign specific values of
velocity in the intermediate points, requesting just the continuity of velocities and accelerations (and of
course positions) in these points.

The trajectory which is obtained this way is called spline (smooth path line).

The spline is the minimum curvature interpolating function, given some conditions on continuity of
derivatives.

Splines are used in a variety of domains, in particular computer graphics.

Spline

Control of industrial robots – Advanced motion planning – Paolo Rocco

4 𝑛𝑛 − 1 − 2 𝑛𝑛 − 1 − 2 𝑛𝑛 − 2 = 2We thus have:

A (not unique) way to use these 2 degrees of freedom consists in assigning suitable initial and final
conditions on the velocity.

 2 𝑛𝑛 − 1 conditions of passage through the points (each cubic has to interpolate the points at its
boundaries)

 𝑛𝑛 − 2 conditions on continuity of velocities in the intermediate points
 𝑛𝑛 − 2 conditions on continuity of accelerations in the intermediate points

residual degrees of freedom.

𝑞𝑞 𝑡𝑡 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡 + 𝑎𝑎2𝑡𝑡2 + 𝑎𝑎3𝑡𝑡3
Since with 𝑛𝑛 points we need 𝑛𝑛 − 1 polynomials like:

each of which has 4 coefficients, the total number of coefficients to be computed is 4 𝑛𝑛 − 1 . The
conditions to be imposed are:

Spline: conditions

Control of industrial robots – Advanced motion planning – Paolo Rocco

We want to determine a function:

𝑞𝑞 𝑡𝑡 = 𝑞𝑞𝑘𝑘 𝑡𝑡 , 𝑡𝑡 ∈ 𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1 , 𝑘𝑘 = 1, … ,𝑛𝑛 − 1
𝑞𝑞𝑘𝑘 𝜏𝜏 = 𝑎𝑎𝑘𝑘0 + 𝑎𝑎𝑘𝑘1𝜏𝜏 + 𝑎𝑎𝑘𝑘2𝜏𝜏2 + 𝑎𝑎𝑘𝑘3𝜏𝜏3, 𝜏𝜏 ∈ 0,𝑇𝑇𝑘𝑘 𝜏𝜏 = 𝑡𝑡 − 𝑡𝑡𝑘𝑘 , 𝑇𝑇𝑘𝑘 = 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘

with the conditions:

where the quantities 𝑣𝑣𝑘𝑘 , 𝑘𝑘 = 2, … ,𝑛𝑛 − 1 are not specified.
The problem consists in finding the coefficients 𝑎𝑎𝑘𝑘𝑖𝑖.

Spline: analytical position of the problem

𝑞𝑞𝑘𝑘 0 = 𝑞𝑞𝑘𝑘 , 𝑞𝑞𝑘𝑘 𝑇𝑇𝑘𝑘 = 𝑞𝑞𝑘𝑘+1
�̇�𝑞𝑘𝑘 𝑇𝑇𝑘𝑘 = �̇�𝑞𝑘𝑘+1 0 = 𝑣𝑣𝑘𝑘+1
�̈�𝑞𝑘𝑘 𝑇𝑇𝑘𝑘 = �̈�𝑞𝑘𝑘+1 0
�̇�𝑞1 0 = 𝑣𝑣1, �̇�𝑞𝑛𝑛−1 𝑇𝑇𝑛𝑛−1 = 𝑣𝑣𝑛𝑛

𝑘𝑘 = 1, … ,𝑛𝑛 − 1
𝑘𝑘 = 1, … ,𝑛𝑛 − 2
𝑘𝑘 = 1, … ,𝑛𝑛 − 2

Control of industrial robots – Advanced motion planning – Paolo Rocco

Assume initially that the velocities 𝑣𝑣𝑘𝑘 ,𝑘𝑘 = 2, … ,𝑛𝑛 − 1 in the intermediate points are known. In
this way, for each cubic polynomial we have four boundary conditions on position and velocity,
which give rise to the system:

Solving the system yields:

Spline: algorithm

𝑞𝑞𝑘𝑘 0 = 𝑎𝑎𝑘𝑘0 = 𝑞𝑞𝑘𝑘
�̇�𝑞𝑘𝑘 0 = 𝑎𝑎𝑘𝑘1 = 𝑣𝑣𝑘𝑘
𝑞𝑞𝑘𝑘 𝑇𝑇𝑘𝑘 = 𝑎𝑎𝑘𝑘0 + 𝑎𝑎𝑘𝑘1𝑇𝑇𝑘𝑘 +𝑎𝑎𝑘𝑘2 𝑇𝑇𝑘𝑘2 +𝑎𝑎𝑘𝑘3 𝑇𝑇𝑘𝑘3 = 𝑞𝑞𝑘𝑘+1
�̇�𝑞𝑘𝑘 𝑇𝑇𝑘𝑘 = 𝑎𝑎𝑘𝑘1 +2𝑎𝑎𝑘𝑘2 𝑇𝑇𝑘𝑘 +3𝑎𝑎𝑘𝑘3 𝑇𝑇𝑘𝑘2 = 𝑣𝑣𝑘𝑘+1

𝑎𝑎𝑘𝑘0 = 𝑞𝑞𝑘𝑘
𝑎𝑎𝑘𝑘1 = 𝑣𝑣𝑘𝑘

𝑎𝑎𝑘𝑘2 =
1
𝑇𝑇𝑘𝑘

3 𝑞𝑞𝑘𝑘+1 − 𝑞𝑞𝑘𝑘
𝑇𝑇𝑘𝑘

− 2𝑣𝑣𝑘𝑘 − 𝑣𝑣𝑘𝑘+1

𝑎𝑎𝑘𝑘3 =
1
𝑇𝑇𝑘𝑘2

2 𝑞𝑞𝑘𝑘 − 𝑞𝑞𝑘𝑘+1
𝑇𝑇𝑘𝑘

+ 𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

Control of industrial robots – Advanced motion planning – Paolo Rocco

Obviously the velocities 𝑣𝑣𝑘𝑘 , 𝑘𝑘 = 2, … ,𝑛𝑛 − 1 must be computed. Let us impose
the continuity of the accelerations in the intermediate points:

�̈�𝑞𝑘𝑘 𝑇𝑇𝑘𝑘 = 2𝑎𝑎𝑘𝑘2 + 6𝑎𝑎𝑘𝑘3𝑇𝑇𝑘𝑘 = 2𝑎𝑎𝑘𝑘+1,2 = �̈�𝑞𝑘𝑘+1 0 , 𝑘𝑘 = 1, … ,𝑛𝑛 − 2

By substituting the expressions for the coefficients 𝑎𝑎𝑘𝑘2, 𝑎𝑎𝑘𝑘3, 𝑎𝑎𝑘𝑘+1,2 and multiplying by ⁄𝑇𝑇𝑘𝑘𝑇𝑇𝑘𝑘+1 2 we
obtain:

𝑇𝑇𝑘𝑘+1𝑣𝑣𝑘𝑘 + 2 𝑇𝑇𝑘𝑘+1 + 𝑇𝑇𝑘𝑘 𝑣𝑣𝑘𝑘+1 + 𝑇𝑇𝑘𝑘𝑣𝑣𝑘𝑘+2 =
3

𝑇𝑇𝑘𝑘𝑇𝑇𝑘𝑘+1
𝑇𝑇𝑘𝑘2 𝑞𝑞𝑘𝑘+2 − 𝑞𝑞𝑘𝑘+1 + 𝑇𝑇𝑘𝑘+12 𝑞𝑞𝑘𝑘+1 − 𝑞𝑞𝑘𝑘

Spline: algorithm

Control of industrial robots – Advanced motion planning – Paolo Rocco

In matrix form:

𝑇𝑇𝑘𝑘+1𝑣𝑣𝑘𝑘 + 2 𝑇𝑇𝑘𝑘+1 + 𝑇𝑇𝑘𝑘 𝑣𝑣𝑘𝑘+1 + 𝑇𝑇𝑘𝑘𝑣𝑣𝑘𝑘+2 =
3

𝑇𝑇𝑘𝑘𝑇𝑇𝑘𝑘+1
𝑇𝑇𝑘𝑘2 𝑞𝑞𝑘𝑘+2 − 𝑞𝑞𝑘𝑘+1 + 𝑇𝑇𝑘𝑘+12 𝑞𝑞𝑘𝑘+1 − 𝑞𝑞𝑘𝑘

𝑇𝑇2 2 𝑇𝑇1 + 𝑇𝑇2 𝑇𝑇1
0 𝑇𝑇3 2 𝑇𝑇2 + 𝑇𝑇3 𝑇𝑇2

⋮
𝑇𝑇𝑛𝑛−2 2 𝑇𝑇𝑛𝑛−3 + 𝑇𝑇𝑛𝑛−2 𝑇𝑇𝑛𝑛−3 0

𝑇𝑇𝑛𝑛−1 2 𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−1 𝑇𝑇𝑛𝑛−2

𝑣𝑣1
𝑣𝑣2
⋮

𝑣𝑣𝑛𝑛−1
𝑣𝑣𝑛𝑛

=

𝑐𝑐1
𝑐𝑐2
⋮

𝑐𝑐𝑛𝑛−3
𝑐𝑐𝑛𝑛−2

where constants 𝑐𝑐𝑘𝑘 depend only on the intermediate positions and on the lengths of the intervals, all
known quantities.
Since the velocities 𝑣𝑣1 and 𝑣𝑣𝑛𝑛 are known (they are specified as initial data), by eliminating the related
columns we have:

Spline: algorithm

Control of industrial robots – Advanced motion planning – Paolo Rocco

2 𝑇𝑇1 + 𝑇𝑇2 𝑇𝑇1
𝑇𝑇3 2 𝑇𝑇2 + 𝑇𝑇3 𝑇𝑇2

⋮
𝑇𝑇𝑛𝑛−2 2 𝑇𝑇𝑛𝑛−3 + 𝑇𝑇𝑛𝑛−2 𝑇𝑇𝑛𝑛−3

𝑇𝑇𝑛𝑛−1 2 𝑇𝑇𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−1

𝑣𝑣2
⋮

𝑣𝑣𝑛𝑛−1

=
3

𝑇𝑇1𝑇𝑇2
𝑇𝑇12 𝑞𝑞3 − 𝑞𝑞2 + 𝑇𝑇22 𝑞𝑞2 − 𝑞𝑞1 − 𝑇𝑇2𝑣𝑣1
3

𝑇𝑇2𝑇𝑇3
𝑇𝑇22 𝑞𝑞4 − 𝑞𝑞3 + 𝑇𝑇32 𝑞𝑞3 − 𝑞𝑞2

⋮
3

𝑇𝑇𝑛𝑛−3𝑇𝑇𝑛𝑛−2
𝑇𝑇𝑛𝑛−32 𝑞𝑞𝑛𝑛−1 − 𝑞𝑞𝑛𝑛−2 + 𝑇𝑇𝑛𝑛−22 𝑞𝑞𝑛𝑛−2 − 𝑞𝑞𝑛𝑛−3

3
𝑇𝑇𝑛𝑛−2𝑇𝑇𝑛𝑛−1

𝑇𝑇𝑛𝑛−22 𝑞𝑞𝑛𝑛 − 𝑞𝑞𝑛𝑛−1 + 𝑇𝑇𝑛𝑛−12 𝑞𝑞𝑛𝑛−1 − 𝑞𝑞𝑛𝑛−2 − 𝑇𝑇𝑛𝑛−2𝑣𝑣𝑛𝑛 i.e an equation in the form 𝐀𝐀𝐀𝐀 = 𝐜𝐜

Spline: algorithm

Control of industrial robots – Advanced motion planning – Paolo Rocco

 Matrix 𝐀𝐀 is a dominant diagonal matrix and is always invertible provided that 𝑇𝑇𝑘𝑘 > 0

 Matrix 𝐀𝐀 has a tridiagonal structure: for these matrices there exist efficient numerical
techniques (Gauss-Jordan method) for its inversion

 Once the inverse of 𝐀𝐀 is known we might compute velocities 𝑣𝑣2,⋯ , 𝑣𝑣𝑛𝑛−1as:

which completely solves the problem.

𝐀𝐀 = 𝐀𝐀−1𝐜𝐜

It is also possible to determine the spline with an alternative (yet completely equivalent) algorithm
which computes the accelerations instead of the velocities in the intermediate points.

Spline: algorithm

Control of industrial robots – Advanced motion planning – Paolo Rocco

-2 0 2 4 6 8 10 12
-10

0

10

20

30

40

50

de
g

Position

-2 0 2 4 6 8 10 12
-20

-10

0

10

20

t(s)

de
g/

s

Velocity

-2 0 2 4 6 8 10 12
-20

-10

0

10

20

t(s)

de
g/

s2

Acceleration

𝑡𝑡1 = 0 𝑡𝑡2 = 2 𝑡𝑡3 = 4 𝑡𝑡4 = 8 𝑡𝑡5 = 10
𝑞𝑞1 = 10° 𝑞𝑞2 = 20° 𝑞𝑞3 = 0° 𝑞𝑞4 = 30° 𝑞𝑞5 = 40°

Spline: example

Control of industrial robots – Advanced motion planning – Paolo Rocco

The overall travel time of a spline is given by:

𝑇𝑇 = �
𝑘𝑘=1

𝑛𝑛−1

𝑇𝑇𝑘𝑘 = 𝑡𝑡𝑛𝑛 − 𝑡𝑡1

It is possible to conceive an optimization problem which minimizes the overall travel time. The problem is
to determine the values 𝑇𝑇𝑘𝑘 so as to minimize 𝑇𝑇, with the constraints on the maximum velocities and
accelerations.
Formally:

min
𝑇𝑇𝑘𝑘

𝑇𝑇 = �
𝑘𝑘=1

𝑛𝑛−1

𝑇𝑇𝑘𝑘

such that
�̇�𝑞 𝜏𝜏,𝑇𝑇𝑘𝑘 < 𝑣𝑣max 𝜏𝜏 ∈ 0,𝑇𝑇
�̈�𝑞 𝜏𝜏,𝑇𝑇𝑘𝑘 < 𝑎𝑎max 𝜏𝜏 ∈ 0,𝑇𝑇

It is then a non linear optimum problem with a linear cost function, which can be solved with operations
research techniques.

Spline: travel time

Control of industrial robots – Advanced motion planning – Paolo Rocco

An alternative, quite simple, way to handle the interpolation problem is to link the points with
linear functions (segments). In order to avoid discontinuities in the velocity, the linear segments
can be connected through parabolic blending (similar to the concatenation of linear paths).

The resulting trajectory 𝑞𝑞 𝑡𝑡 does not
pass through any of the intermediate
points, though it is close to them. In this
case the intermediate points are called
via points

This picture is taken from the textbook:

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo:
Robotics: Modelling, Planning and Control, 3rd Ed.
Springer, 2009

Interpolation with linear segments

Control of industrial robots – Advanced motion planning – Paolo Rocco

If we use a sequence of trajectories with trapezoidal velocity profile to interpolate points, we
would obtain a motion which passes through these points with zero velocity (i.e. stopping).
To avoid this we can start the planning of a trajectory before the end of the preceding one:

This picture is taken from the textbook:
B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo:
Robotics: Modelling, Planning and Control, 3rd Ed., Springer, 2009

TVP and interpolation of points

	Diapositiva numero 1
	�Advanced motion planning
	�Path planning with obstacle avoidance
	�Concatenation of linear paths
	�Concatenation of linear paths
	�Concatenation of linear paths
	�Concatenation of linear paths
	�Obstacle avoidance
	�Via points in robot programming languages
	�Configuration space
	�Setting the problem
	�Probabilistic planning
	�PRM (Probabilistic roadmap)
	�PRM (Probabilistic roadmap)
	�PRM (Probabilistic roadmap)
	�RRT (Rapidly-exploring random trees)
	�RRT (Rapidly-exploring random trees)
	�RRT (Rapidly-exploring random trees)
	�RRT (Rapidly-exploring random trees)
	�RRT (Rapidly-exploring random trees)
	�Artificial potentials
	�Alternative definitions of time laws
	�Harmonic trajectory
	�Harmonic trajectory (example)
	�Cycloidal trajectory
	�Cycloidal trajectory (example)
	�Trajectory scaling
	�Trajectory normalization
	�Polynomial trajectory of degree 3
	�Polynomial trajectory of degree 5
	�Harmonic trajectory
	�Cycloidal trajectory
	�Kinematic scaling: an example
	�Dynamic scaling
	�Dynamic scaling
	�Dynamic scaling
	�Dynamic scaling
	�Dynamic scaling
	�Dynamic scaling: example
	�Interpolation of points
	�Interpolation with a polynomial
	�Interpolation with a polynomial
	�Interpolation with a polynomial
	�Interpolation with a polynomial
	�Interpolation with cubics
	�Interpolation with cubics
	�Interpolation with cubics
	�Spline
	�Spline: conditions
	�Spline: analytical position of the problem
	�Spline: algorithm
	�Spline: algorithm
	�Spline: algorithm
	�Spline: algorithm
	�Spline: algorithm
	�Spline: example
	�Spline: travel time
	�Interpolation with linear segments
	�TVP and interpolation of points

