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Exercise 1 

Consider the manipulator sketched in the picture, where the mass of the second link is assumed to be concentrated at the 
end-effector 
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1.1 Find the expression of the inertia matrix of the manipulator. 

Denavit-Hartenberg frames can be defined as sketched in the picture. 

Computations of the Jacobians: 
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Auxiliary vectors for the above computations: 
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Inertia matrix: 
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1.2 Compute the matrix ( )qqC ,  of the Coriolis and centrifugal terms 1 for this manipulator 

The only derivative in the Christoffel symbols which is different from zero is: 
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The matrix of the Coriolis and centrifugal terms is thus: 
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1.3 Write the complete dynamic model for this manipulator 

Since the motion is in a horizontal plane, the gravitational terms are clearly zero. 

Thus the model can be written as: 

( ) ( ) τ=+ qqqCqqB  ,  

or 
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1.4 Show that the model obtained in the previous step is linear with respect to a set of dynamic parameters. 

It is possible to express the dynamic model as: 

( ) τπ =qqqY ,,  

where 
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1 The general expression of the Christoffel symbols is: 
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Exercise 2 

Consider a kinematically redundant manipulator 

2.1  Write the general expression of the solutions of the inverse kinematics problem at velocity level 

Given a set of desired task variables rd, such that: 

qJr  =d  

where J is the Jacobian matrix, the general expression of the solution of the inverse kinematics is: 

0
# qPrJq  += d  

J# is the pseudo-inverse of the Jacobian, defined as: 

( ) 1# −
= TT JJJJ  

The term 0qP  defines the null-space motions: P is a matrix that projects a generic joint velocity 0q  in the null space of 
the Jacobian and takes the expression: 

JJIP #−= n  

 

2.2 Express the solution in the form that includes a closed loop correction (kinematic control) and explain why this 
correction is used 

The solution with closed-loop correction can be written as: 

( ) ( )[ ] ( ) ( )( ) 0
## qqJqJIrrKrqJq  −+−+= ndd  

where: 

( )qfr =  

is obtained through direct kinematics. 

The correction is used to recover errors with respect to an assigned task rd due to initial mismatches, drifts, inaccuracies 
of the solution. 

 

2.3 Explain some criteria to select the joint velocities to be projected onto the null space of the Jacobian matrix. 

One possible choice for the velocities 0q is the projected gradient method: 
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where U(q) is a differentiable objective function: we try to locally maximize U(q) while executing the task.  

Examples for the objective function might be: 

 manipulability index 

 distance from joint limits 

 distance from obstacles 

 

2.4  Explain what we mean with cyclic or repeatable kinematic inversion method. Cite one such method. 

A cyclic or repeatable method guarantees that a closed trajectory in the task space is mapped into a closed trajectory in 
joint space. An example of such methods is the extended (or augmented) Jacobian method. 
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Exercise 3 

Consider the planning of a trajectory for the orientation of the end-effector in the operational space. 

3.1  Write the formula for the interpolation of a set of three Euler angles. 

The formula is: 
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i
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−
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where φi are the initial values of the Euler angles, φf are the final values, while s is a natural coordinate ranging from 0 to 
|| φf − φi ||. 

 

 

3.2  Making reference now to the following picture, explain how the orientation can be planned using the axis-angle 
representation. 

 

Define with Ri(t) the matrix that describes the transition from Ri  (initial orientation) to Rf (final orientation). 

Then: 

( ) ( ) i
ff

ii t RRIR == ,0
 

Matrix Ri(t) can be interpreted with the axis-angle representation as Ri(ϑ (t), r), where: 

  r is constant and can be computed from the elements of Ri
f 

 ϑ(t) can be made variable with time, through a suitable timing law, with ϑ (0)=0, ϑ (tf)= ϑ f 

In order to characterize at each time t the orientation in the base frame it is then enough to compute: 

( ) ( )tt i
i RRR =  

 

3.3  Explain what is the advantage in using the axis-angle representation compared to the interpolation of a set of three 
Euler angles. 

The interpolation of the Euler angles suffers from poor predictability and understanding of the intermediate orientation. 
This problem is mitigated with the use of the axis-angle representation. 
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3.4 Suppose that the angle in the axis/angle representation has to change from 0 to 1 (rad) in 2 seconds. Plan a cubic 
trajectory for the angle.  

We need to find the coefficients of the polynomial: 
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From the conditions at t = 0, we easily obtain a0 = a1 = 0. From the conditions at t = 2 we obtain the linear system: 
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Then the expression of the cubic polynomial is: 
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Exercise 4 

Consider the independent joint control of a manipulator. 

4.1 Explain what is meant with “decentralized model” and how such approximation is used in the independent joint 
control. 

The “decentralized model” approximation means that all the coupling and nonlinear terms of the dynamic model of the 
manipulator are ignored and only the inertias at the joints, along with the effects of the inertias of the motors, are 
considered.  

Leveraging on this decentralized model, in the independent joint control the control system is articulated in n SISO 
control loops, where the dynamic coupling effects between joints are dealt with as disturbances. The single control 
problems are addressed as control of a servomechanism. 

 
4.2 In a two-link planar manipulator with rotational joints, the inertia matrix takes the following expression: 
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 Explain what is the approximate form of such matrix that is used in the decentralized model. 

In the decentralized model the off-diagonal terms of the inertia matrix are ignored, while an average value is taken for 
each of the diagonal terms.  

In this specific case this can be done for example taking a value of ϑ2 such that cos(ϑ2) is zero.  

We thus obtain: 
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4.3 Assume now that m2 = 50, l2 = 0.5, I2 = 10. For the second joint of the planar two-link manipulator, where the 
following actuation system is used: 

 motor inertia Jm = 0.005 

 reduction ratio n = 100 

 tune a PI speed controller so as to achieve a crossover frequency ωcv = 200 rad/s. 

In the servomechanism problem for the second joint, the load inertia is: 
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The load inertia reflected at the motor axis is then: 
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The gain of the controller is: 
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4.4 Tune a proportional position controller in order to 
achieve a crossover frequency ωcp = 20 rad/s. 
Suppose then that a step response for the closed loop 
position control system is obtained. Explain which 
one, out of the two plots reported here, is obtained 
with speed feedforward and which one is without. 

 

 

 

 

 

 

 

 

In order to tune the controller it is enough to set: 

20=ω= cpppK  

Speed feedforward is used to speed up the response of the position, achieving a bandwidth comparable to the one of the 
speed control loop. Thus response A refers to the case without speed feedforward, response B with. 
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