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Exercise 1 

Consider the manipulator sketched in the picture: 
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1.1 Find the expression of the inertia matrix of the manipulator1. 

Denavit-Hartenberg frames can be defined as sketched in the picture. 

Computations of the Jacobians: 
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Auxiliary vectors for the above computations: 
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Inertia matrix: 

                                                 

1 The cross product between vectors 
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1.2 Write the expression of the gravitational terms for this manipulator. 

The gravity acceleration vector is: 
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Then the gravitational torques are: 
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1.3 Write the expression of a “PD + gravity compensation” control law in the joint space for this specific manipulator. 

The vector equation of the control law is: 

( ) ( )qgqKqqK +−−= DdPτ  

and corresponds, for the given manipulator, to the following two equations: 
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1.4 Write the expression of a “PD + gravity compensation” control law in the operational space for the generic 
manipulator. 
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Exercise 2 

Consider a kinematically redundant manipulator. 

2.1  Explain what the “null-space motions” are. 

Null space motions are motions in the joint space that do not change the task variables (usually end effector position and 
orientation). 

 

2.2 Write an expression for the null-space motions, explaining the meaning of each symbol used. 

Given a set of task variables r, such that: 

qJr  =  

where J is the Jacobian matrix, the general expression of the solution of the inverse kinematics is: 

0
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where J# is the pseudo-inverse of the Jacobian, defined as: 

( ) 1# −
= TT JJJJ  

The term 0qP  defines the null-space motions. 

P is a matrix that projects a generic joint velocity 0q  in the null space of the Jacobian and takes the expression: 

JJIP #−= n  

 

2.3 Consider now motion planning of the end-effector position. Select as an initial point pi = [1, 0, 1] and as a final 
point pf = [3, 2, 2]. Write the expression of a segment connecting the initial and the final points, parameterized with 
the natural coordinate. 

The general expression of the segment is: 
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2.4  Assume that the maximum linear velocity and the maximum linear acceleration of the end-effector are given by 
2max =v m/s and 3max =a  m/s2, respectively. Assuming a trapezoidal velocity profile, find the minimum travelling 

time for the trajectory. 

The total displacement is h = 3. 

Since the following inequality holds true: 
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Exercise 3 

Consider the decentralized control of a manipulator.  

3.1 Explain what is meant with “independent joint control”.  

In the independent joint control the control system is articulated in n SISO control loops, ignoring the dynamic coupling 
effects between joints, which are dealt with as disturbances. The single control problems are addressed as control of a 
servomechanism. 

 

3.2 What is the property of industrial robots upon which such method heavily relies? Why? 

The method heavily relies on the large values of the reduction ratios adopted in robotics. The effects of the 
nonlinearities and of the couplings between joints scale down with the reduction ratios: the larger these are, the more 
reliable is the assumption of a linear and decoupled system which is enforced when using the independent joint control. 

 

3.3 Assume now that the joints are affected by flexibility: sketch the root locus of the speed control and explain what is 
the graphical method to tune the speed controller based on such locus. 

The root locus takes this shape: 
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The graphical method consists in selecting the gain of the speed controller in such a way that the damping of the 
complex and conjugate poles is maximized (see the picture). 

This is usually obtained tuning the nominal (i.e. computed on the rigid model) bandwidth of the speed control loop as: 

zcv ω≈ω 7.0  

where ωz is (an estimate of) the antiresonance frequency (natural frequency of the zeros). 

 

3.4 Assume now the following values for the physical parameters of one of the joints : 
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 Jl = 9 Kg m2, ρ = 2, n = 30, Kel = 400. 

 Tune a PI speed controller for this servomechanism. 

The load inertia reflected at the motor axis is: 
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The nominal crossover frequency is then: 
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We use the following tuning formula: 
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Exercise 4 

4.1 Explain the difference between an impedance control and a force control. 

With the impedance control the goal is to assign a prescribed dynamic relation between interaction forces and position 
errors. With the force control we want that in the directions constrained by the environment a force/torque with a 
specified value be established. 
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4.2 Sketch the block diagram of an implicit impedance control scheme for a single d.o.f. system. 

+

f

u
G(s)

x
R(s)++xd

Gd(s)
impedance controller  

 

4.3 Sketch the block diagram of an implicit force control scheme for a single d.o.f. system, in contact with an 
environment. 
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4.4 Assume that the contact established with the environment is practically rigid and that the system of item 4.3 is 

position controlled with a PID, whose gains are KP = 60, KI = 10, KD = 50. Find the expression of the force 
controller, tuned to achieve a bandwidth of 30 rad/s. 

If contact is rigid, the previous block diagram can be simplified as: 

fu
R(s)

xd
≅1Rf(s)+fd C(s)

 
The transfer function C(s) partially compensates for the transfer function of the PID controller: 
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Controller Rf(s) is a PI: 
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which means that the loop transfer function is: 
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Referring to the Bode diagram qualitatively sketched 
here, we can tune the controller as follows: 
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