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Exercise 1 

Consider the manipulator sketched in the picture: 
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1.1 Find the expression of the inertia matrix of the manipulator1. 

Denavit-Hartenberg frames can be defined as sketched in the picture. 

Computations of the Jacobians: 
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Auxiliary vectors for the above computations: 
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Inertia matrix: 

                                                 

1 The cross product between vectors 
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1.2 Compute the expression of the Coriolis and centrifugal terms for this manipulator2. 

The only derivative in the Christoffel symbols which is different from zero is: 
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The matrix of the Coriolis and centrifugal terms is thus: 
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1.3 Check that matrix ( ) ( ) ( )qqCqBqqN  ,2, −=  is skew-symmetric. 

Matrix N can be written as 
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and is indeed skew-symmetric. 

 

 

 

 

                                                 

2 The expression of the Christoffel symbols is: 
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1.4 Consider a single link, as sketched in the picture. Without going through the 
derivation, write the expression of the kinetic energy of the link, specifying 
the meaning of all the symbols used.  

The expression of the kinetic energy of the link is: 
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where: 

mi is the mass, Ii is the inertia tensor, 
ilp  is the linear velocity of the center of mass, and iω  is the angular velocity 

vector. 

 

Exercise 2 

2.1 Using any motion programming language (for example COMAU PDL2) write the instruction to command a motion 
on a straight line towards a certain final position. Explain what options are usually available to command a motion 
other than along a straight line. 

Using COMAU PDL2, the instruction takes this form: 
MOVE LINEAR TO P1 

where P1 is a target position. 

Other possibilities are a motion along an arc (MOVE CIRCULAR) or a motion in joint space (MOVE JOINT).  

 

2.2 Write the parametric expression (in terms of a natural coordinate) of a segment in space, used for planning a linear 
path. 

The parametric expression of a segment is: 
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where pi and pf are the initial and final positions, respectively. 

 

2.3 Prove that, in the general case, the absolute value of the time derivative of the natural coordinate s is the norm of 
the linear velocity of the end-effector. 

Given a generic path parametrized in the natural coordinate p(s), the time derivative of p is: 
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where t is the tangent unit vector. 

Therefore the absolute value of s  is the norm of vector p  

 

 

2.4 Assume now that the length of the segment to cover is 0.5 m and that the maximum linear velocity of the end 
effector is 1.5 m/s. Compute the minimum positioning time, if a cubic dependence on time of the natural coordinate 
is used. 

The parametric form of a cubic trajectory is: 

( ) ( )τσ+= hsts i  
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where the parameter σ takes the form: 
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The maximum value of the derivative with respect to time of s is related to the travel time T and to the total 
displacement h by the formula: 
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Since the derivative of s is the linear velocity of the end-effector, we have the inequality: 
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The minimum positioning time is then 0.5. 

 

Exercise 3 

Consider a kinematically redundant manipulator. 

3.1  Explain what the “null-space motions” are, and write an expression for the null-space motions, explaining the 
meaning of each symbol used. 

Null-space motions are motion in the joint space that do not yield any motion of the task variables. Given some task 
variables r, the general expression of the joint velocities is: 

( ) 0
## qJJIrJq  −+= n  

where J is the Jacobian of the task variables, J# is its pseudo inverse matrix, and 0q   is a vector of joint velocities to be 
projected in the null space of the Jacobian. 

 

3.2  Consider a standard six degrees of freedom robot manipulator with rotational joints: specify a task for which this 
robot  is redundant and the size of the null space of the Jacobian for such task. 

A six d.o.f. robot manipulator is redundant for the task of keeping a certain position at the end effector with arbitrary 
orientation. Since this task has dimension 3, the null space of the Jacobian has dimension 6 – 3 = 3. 

 

3.3  Explain how the null-space motions can be used to satisfy secondary criteria, making at least two examples of such 
criteria. 

The joint space velocities 0q can be shaped as proportional to the gradient of a potential function: 
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with the aim to approximately optimize such function. 

Examples for the potential function can be the manipulability measure (to stay away from singularities), the distance to 
the joint limits and the minimum distance from the closest obstacle. 

 

3.4  Consider now a closed-loop kinematic control (i.e. an inverse kinematics scheme) for a redundant robot: sketch the 
block diagram of the controller. 

The block diagram takes this shape: 
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Exercise 4 

Consider the control of a manipulator with vision sensors. 

4.1 Explain what we mean with “image-based” controller.  

In an image-based control scheme the error that drives the controller is computed directly in terms of errors between 
desired and actual image features. 

 

4.2 Sketch the block diagram of an image-based look-and-move controller. Briefly explain what is the advantage of 
using a look-and-move configuration. 

The block diagram can be sketched as follows. 

 
In a look-and-move configuration the visual controller is closed outside the industrial position controllers and can rely 
on their high bandwidth, so that the position controlled robot can be seen as an ideal positioner. 

 
4.3 Consider now a robot equipped with force sensors. For a single degree of freedom mechanism, sketch the block 

diagram of an implicit force controller in case of contact with a stiff environment. Briefly explain what is the 
advantage of using an implicit configuration. 

The block diagram of the position controlled mechanical system in contact with the environment is: 
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Assuming a stiff environment (K → ∞) and closing a loop on the force feedback, we have: 
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fu
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xd
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where the force controller partially compensates for the dynamics of the position controller. 

The advantage of using an implicit controller is to rely on the industrial position controllers that are left unchanged. 

 

4.4 Assuming that the dynamics of the position controller are correctly compensated, design the force controller in 
such a way to obtain a bandwidth of 10 rad/s. 

The dynamics of the position controller can be compensated except for the integrator. 

The closed loop system then becomes: 
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Taking a PI as a force controller: 
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the loop transfer function is: 
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As it is clear from the Bode diagram, a suitable choice of the 
controller gain can be: 
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