Controlli Automatici A

(Prof. Rocco)

Anno accademico 2012/2013 Appello del 3 Luglio 2013

Cognome:	
Nome:	
Matricola:	
	Firma:

Avvertenze:

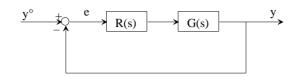
- Il presente fascicolo si compone di 8 pagine (compresa la copertina). Tutte le pagine utilizzate vanno firmate.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare l'ultima pagina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

T.		
Firma:		

Utilizzare questa pagina SOLO in caso di correzioni o se lo spazio a disposizione per qualche domanda non è risultato sufficiente

Si consideri il sistema dinamico di equazioni:

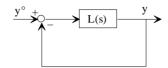
$$\begin{cases} \dot{x}_1 = -x_1 + x_2 + u \\ \dot{x}_2 = -2x_2 + \alpha x_3 \\ \dot{x}_3 = x_1 - 3x_3 \end{cases}$$


$$y = x_1$$

1.1 Si determini l'insieme di valori del parametro α per cui il sistema è asintoticamente stabile.

1.2 Si determini l'insieme di valori del parametro α per cui il sistema è completamente raggiungibile.

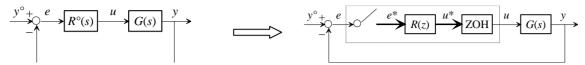
1.3 Si determini l'insieme di valori del parametro α per cui il sistema è completamente osservabile.


Si consideri il seguente sistema di controllo:

dove
$$G(s) = \frac{10}{(1+s)^2(1+0.1s)}$$
.

- **2.1** Si determini la funzione di trasferimento R(s) del regolatore in modo tale che:
- L'errore e a transitorio esaurito soddisfi la limitazione: $|e_{\infty}| \le 0.25$ quando $y^{\circ}=15$ sca(t).
- Il margine di fase φ_m sia maggiore o uguale di 50° .
- La pulsazione critica sia maggiore o uguale di 3 rad/s.
- Il regolatore sia di ordine non superiore a 2 (la sua funzione di trasferimento abbia al più due poli)

Si consideri il sistema dinamico in retroazione:


in cui
$$L(s) = \rho \frac{s-2}{(s+1)^3}$$
.

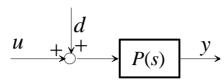
3.1 Si tracci il luogo delle radici diretto.

3.2 Si tracci il luogo delle radici inverso.

3.3 Sulla base dei luoghi tracciati, si determini l'insieme dei valori di ρ per cui il sistema in anello chiuso è asintoticamente stabile.

Si consideri la realizzazione digitale di un controllore analogico:

Sia:


$$G(s) = \frac{1}{s+1}, \quad R^{o}(s) = 3\frac{s+1}{s}.$$

4.1 Si determini il valore del tempo di campionamento in modo tale che il decremento di margine di fase indotto dal ritardo intrinseco di conversione sia di circa 9°.

4.2 Si determini R(z) con il metodo di Tustin.

4.3 Si scriva l'algoritmo che deve essere realizzato ad ogni istante di tempo dal controllore digitale.

5.1 Si consideri un generico sistema affetto da un disturbo di carico:

Si disegni lo schema a blocchi di un "osservatore del disturbo", definendo i simboli utilizzati e spiegando sinteticamente qual è l'obiettivo di questo schema di controllo.

5.2 Si disegni lo schema a blocchi dell'osservatore nel caso in cui il sistema sotto controllo sia un servomeccanismo rigido.

5.3 Si spieghi se l'osservatore del disturbo è efficace nella reiezione dei disturbi di bassa frequenza o di alta frequenza.

Firma:	 	
FIIIIIa	 	• • • •

6.1 Si spieghi quali sono le tipologie di accoppiamenti tra circuiti elettrici di interesse in un sistema di acquisizione dati, dando una breve descrizione di ciascuno di essi.

6.2 Si spieghi quale tipo di accoppiamento può essere contrastato con l'uso di cavi schermati e quale con l'uso di cavi twistati (intrecciati).