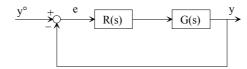
Fondamenti di automatica

(Prof. Rocco)

Appello del 4 Febbraio 2002

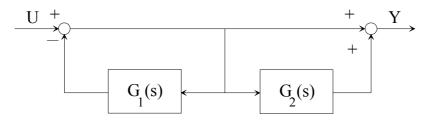

Cognome:	
Nome:	
Matricola:	
	Firma:

Avvertenze:

- Il presente fascicolo si compone di 8 fogli (compresa la copertina). Tutti i fogli utilizzati vanno firmati.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite esclusivamente negli spazi predisposti.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.

Esercizio 1

Si consideri il sistema di controllo di figura:


dove
$$G(s) = 10 \frac{1-s}{(1+2s)(1+0.2s)}$$
.

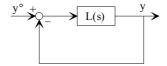
- 1.1 Si determini la funzione di trasferimento R(s) del regolatore in modo tale che:
- In presenza di un segnale di riferimento $y^{\circ}(t) = sca(t)$ l'errore e a transitorio esaurito (e_{∞}) sia nullo.
- Il margine di fase φ_m sia maggiore o uguale a 50°
- La pulsazione critica ω_c sia la più grande possibile.

1.2 Si supponga di volere realizzare il regolatore in tecnologia digitale: si calcoli il decremento di margine di fase associato al ritardo intrinseco di conversione, quando si adotta come pulsazione di Nyquist il valore $\Omega_N = 5$ rad/s.

Esercizio 2

Si consideri il sistema dinamico descritto dal seguente schema a blocchi:

2.1 Si determini la funzione di trasferimento da *u* a *y*.


2.2 Si dica, giustificando la risposta, se è necessario e/o sufficiente che G_1 e/o G_2 siano asintoticamente stabili perché lo sia il sistema nel suo complesso.

2.3 Posto: $G_1(s) = \frac{1}{s}$, $G_2(s) = \frac{1}{s+1}$, si determinino, se possibile, il valore iniziale ed il valore finale di y(t) quando u(t) = sca(t).

Firma:

Esercizio 3

Si consideri il sistema di controllo di figura:

in cui:

$$L(s) = \frac{\mu}{(s+2)^4}, \, \mu > 0.$$

3.1 Si determini, *con il criterio di Nyquist*, il massimo valore di μ per cui il sistema in anello chiuso è asintoticamente stabile.

- .		
Firma:		
L 11 1111a	 	

3.2 Si verifichi il risultato precedente con il metodo del luogo delle radici.

Esercizio 4

Si consideri il seguente sistema a tempo discreto:

$$\begin{cases} x_1(k+1) = 2x_1(k) + u^2(k) \\ x_2(k+1) = x_1(k)x_2(k) \\ x_3(k+1) = x_1(k) + x_2(k)x_3(k) \end{cases}$$

4.1 Si determini il punto di equilibrio corrispondente all'ingresso costante $u(k) = \overline{u} = 2$.

Firma:

4.2 Si discuta la stabilità del suddetto punto di equilibrio.