
Industrial automation and robotics

Logic control: the PLC

Prof. Paolo Rocco (paolo.rocco@polimi.it)
Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Modulating and logic control

In process and factory automation we must control both continuous time physical quantities and
discrete variables.
An automation system is in fact composed of many different controllers.
Part of them are digital control systems, i.e., PIDs, used to control continuous time physical
quantities.
Another important part is made by devices used to control action sequencing, safety interlock
logics, etc. These devices are called Programmable Logic Controllers (PLCs).

Sometimes the following terminology is used:
 Modulating control (control of continuous time physical quantities)
 Logic control (control of the sequence of actions)

Some of these slides are based on the
lectures of Prof. Alberto Leva
(Politecnico di Milano)

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Production processes

Industrial processes can be classified by the type of operations and transformations they (mainly)
carry out.

We then talk about:
 continuous processes
 batch processes
 discrete or manufacturing processes

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Continuous processes

In continuous processes there are continuous transformations of mass and energy.
The goal of the process is to achieve a uniform product over time.
Examples are power plants, distribution plants, paper mills, ...

In such processes modulating control prevails.
The logic control deals essentially with ignition, shutdown,
emergencies, supervision.

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Batch processes

Products are processed in quantities or batches of scalable size.
The control of these plants is therefore based on the recipes of processing, i.e. the sequence of processes
to be done to obtain the product.
Examples are chemical plants, food production, ...

In such processes modulating control operates
essentially in the subsystems of production
The logic control implements the recipes and
must ensure a correct use of plant resources.

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Discrete processes

Discrete processes are characterized by processing cycles involving individual parts or individual units of
product (pieces). Processing, transport and storage operations are present.
Examples are machining centers, assembly, storage...

In such processes modulating control essentially deals
with motion within individual machines (e.g. spindle
speed).
The logic control coordinates all the machines, the lines
of production, transport systems, and so on.

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Action sequencing and logic control

Action sequencing is the control of a set of actions, triggered by events, that should be executed in the
correct order, examples are:
 controlling an elevator
 controlling a vending machine
 controlling the lightning system
 controlling a production plant
 etc.

In general, the correct execution of an action and the correction action sequencing require different
strategies for both the formalization of the problem and for the implementation of a proper logic
control.

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

A discrete events system is a dynamic system (then endowed with a state) where:
 The state takes values only in a discrete set of values
 The evolution of the state is exclusively given by the occurrence of asynchronous events (i.e. whose

timing does not obey any regularity property)
A classical example is the line of people at a counter, where the state is number of people queuing while
the events are the arrival of new people or the exit of other people.
Finite state automata and Petri nets are among the most widely used mathematical tools for modeling
discrete event systems (we will not cover them in this course).

Discrete events systems

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Consider an extremely simple example made by a lamp and a button.
When you press and release the button, if the lamp was off it turns on, and if it was on it turns off.
Switching on and off takes place at the moment the button is released.

Discrete events systems: an example

This is a dynamic system because just observing the input (the fact that
the button is pressed or not), we cannot infer the state of the lamp
(turned on or switched off): we also need an initial state.

The variables involved are:
 The button {pressed, released} which serves as an input
 The lamp {on, off} which serves as state (and output)

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

The dynamic system does not evolve based on time but based on events.
The only significant event here is the release of the button, irrespectively of the time history of the button
pressing/release:

Discrete events systems: an example

timebutton

time

timelamp

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Hierarchical automation systems

It is rather common that the automation system is
organized in hierarchical layers.
At the highest level there is the ERP (Enterprise
Resource Planning), a management systems that
gathers all the functions at company level.
The lowest level corresponds to field devices like
sensors and actuators.

We are now interested in this level

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

The programmable logic controller

The PLC (Programmable Logic Controller) was introduced in
automation to replace sequential relay circuits, with a device
capable of acquiring inputs and performing logic operations
on them after programming.

The diffusion of PLCs in automation is enormous: in fact they
realize the logic control that together with the modulating
control performs low-level functions essential for the
production process.

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

The programmable logic controller

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

A PLC program is executed repeatedly, every 𝑇𝑇𝑐𝑐 milliseconds, as long as the controlled system is running,
and consists in the following steps:
 the status of physical inputs is copied to an area of memory accessible to the processor (I/O Image

Table)
 the user program is run from its first instruction down to the last one, and the I/O image table is

updated with the status of outputs
 operating system services are executed
 the status of outputs is copied from the I/O image table to physical outputs

𝑇𝑇𝑐𝑐 is called cycle time and is related to the specific application.
The previous steps are executed as a sequence of instructions, as a consequence the input signals can be
acquired only at the beginning of the PLC cycle (no input variations during the cycle time can be
detected).

The programmable logic controller

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Under the IEC 61131-3 standard, PLCs can be programmed using standard-based programming languages.

IEC 61131-3 currently defines five programming languages for programmable control systems:
 Function Block Diagram (FBD)
 Ladder Diagram (LD)
 Sequential Function Chart (SFC)
 Structured Text (ST or STX), similar to Pascal
 Instruction List (IL), similar to machine assembly (now deprecated)

FBD, LD and SFC are graphical programming languages, while ST and IL are text programming languages.

In this course we will cover the Ladder Diagram and the Sequential Function Chart

Programming a PLC

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

The Ladder Diagram (LD) is derived from the drawings of control systems made with electromechanical
relays.
It is based on the concepts of contact and coil and was initially designed for binary logic functions; then it
was extended to cover more advanced functions.

It is a low-level and poorly structured language, not very suitable for complex systems. However, it is
important because it was the first graphic language for PLCs, is present in all industrial PLCs and is a de facto
standard of the American market.

Ladder diagram

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

A ladder diagram consists of:
 two vertical lines called risers: the left riser is figuratively connected to the power supply, the right

one to ground
 some horizontal connections between the vertical lines, called rungs that contain contacts on the

left and coils on the right
 the “current” can only flow from left to right
 each variable and each coil are associated with logical variables
 the rungs are explored from the top to the bottom
 if there is electrical continuity between the left riser and the coil, the logical variable associated

with the coil is 1 (true), otherwise it is 0 (false)

Ladder diagram

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Consider this very simple Ladder Diagram:

Ladder diagram: first example

In1 In2 Out
---		----		---+---()---
In3				
------		-------+		
Power supply Ground

 When the variables In1 and In2 are “true” the,
corresponding contacts are closed and the current flows
from the power supply to the coil associated with the
variable Out which is then true

 The same applies when variable In3 is true
 Then Out is true when either both In1 and In2 are true or

when In3 is true
 The corresponding logic function is then:

Out = (In1 AND In2) OR In3

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

To avoid ambiguities, the definition of a Ladder Diagram obeys some rules:

Ladder diagram: basic rules

The current can flow through contacts and coils only from left to right

Rule 1

In1 In2 In3 Out
---		---+---		---+---		---+---()---
	In4 In5					
+---		---+---		---+		
In6						
---		-------------+				

In this diagram the current cannot flow like the red arrow.

The logic function represented by this block diagram is therefore:

Out = (In1 AND ((In2 AND In3) OR (In4 AND In5))) OR (In6 AND In5)

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Ladder diagram: basic rules

The rungs are explored by the PLC from the first at the top to the last at the bottom, and at the last
the PLC starts again from the first one.
As a result, the order of the rungs is relevant (as is that of the instructions in a program).

Rule 2

The synchronization of the variables of the program with inputs and outputs takes place according to the
principle of massive copying:

 the inputs are read (and for the purposes of the program remain constant throughout the cycle)

 all the rungs are executed (unless there are jumps, see later) and all the coils are assigned a value

 each coil retains its value until it is rewritten in a subsequent cycle

 the outputs are updated

 the cycle is started all over again

Rule 3

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

The contacts

Symbol

Normally open contact

--| |--

It is associated with a Boolean variable (a bit): if the bit associated with the contact is 1 (“true”) the contact
is closed and there is logical (electrical) continuity, otherwise the contact is open and there is no continuity.

Symbol

Normally closed contact

--|/|--

It is associated with a Boolean variable (a bit): if the bit associated with the contact is 0 (“false”) the contact
is closed and there is logical (electrical) continuity, otherwise the contact is open and there is no continuity.

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

The coils

Symbol

Normal coil

--()--

It should always be inserted at the end of the rung and can be associated with an output bit or internal bit
but not with an input (which would not make sense).

The coil is activated when current passes through it. The bit associated with it is 1 (“true”) if the logical
conditions to its left are verified, otherwise it is 0 (“false”). The name of the bit is placed above the coil.

Symbol

Latch coil

--(L)--

When it is activated, the associated bit becomes 1 and remains in this state until a coil associated with the
same bit and of the unlatch type is activated

Symbol

Unlatch coil

--(U)--

When it is activated, the associated bit becomes 0 and remains in this state until a coil associated with the
same bit and of the latch type is activated

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

A second example

Consider the following ladder diagram:

The logic function is clearly:

X is then true when one, and only one, within A and B is true. This logic function is also called Exclusive OR

A B X
---		----	/	---+---()---
A B				
---	/	----		---+

X = (A AND NOT(B)) OR (NOT(A) AND B)

X = A XOR B

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Edge detection contacts

Symbol

Positive edge detection contact

--|P|--

The positive edge detection contact closes for a single cycle when the bit associated with it changes from 0
to 1, and remains open in all other cases.

Symbol

Negative edge detection contact

--|N|--

The negative edge detection contact closes for a single cycle when the bit associated with it changes from 1
to 0 and remains open in all other cases.

Other elements can be used in the ladder diagrams:

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Timers

Symbol

Normal timer

 Duration is a parameter, usually expressed in ms, and obviously indicates how long the timer should
count

 If the “current” reaches the timer (from the left) the timer counts the time until it reaches the duration

 At this point the variable TimerName is set to 1 and remains in this state until the reset of the timer,
which occurs when the electrical continuity towards the timer stops

 In any other case, TimerName is equal to 0

 At all times, the time counted by the timer is accessible with a special symbolic name automatically
defined by the system, usually TimerName.acc (accumulated time).

+-----------+
| T |

---| TimerName |---
| Duration |
+-----------+

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Timers

Symbol

Latch timer

 It is similar to the normal timer
 When the electrical continuity towards the block is absent, the timer is not reset, instead it stops the

time count at the value reached at that time.
 When continuity returns, the count then resumes from the previously reached value

 To reset the time count, a special command is used

+-----------+
| TL |

---| TimerName |---
| Duration |
+-----------+

TimerName
---(RES)---

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Counter

Symbol

Counter

 Similar to the latch timer
 The positive edges, from 0 to 1, of the input In are counted, up to the number NumEdges, if there is

electrical continuity at the input En (enable)

 To reset the counter, a special command is used:
CountName

---(RES)---

+-----------+
| |

En ---| |
| CU |

In ---| CountName |---
| NumEdges |
+-----------+

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

If the JMP coil is powered, the PLC jumps to the rung right after the
one that contains only the LBL element

---(JMP)---

---|LBL|---
Sample of LD code:

if (A or D) {
X = B; Y = A;}

else {
X = D or C; Y = not X;}

Control of the flow

Symbol

Jump to a label

| A ThenPart |
|---| |---+---------------(JMP)---|
| D |
|---| |---+
| D X
|---| |---+---------------(
| C |
|---| |---+
| X Y
|---|/|-------------------(

|
|
|

)---|
|
|
|

)---|
| EndIf |
|-------------------------(JMP)---|
| ThenPart |
|--|LBL|--------------------------|

| EndIf

| B X |
|---| |-------------------()---|
| A Y |
|---| |-------------------()---|

|
|--|LBL|--------------------------|

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Other instructions

Symbol (for sum)

Arithmetic/logic instructions
+-----------+
| ADD |

---| Element1 |---
| Element2 |
| Result |
+-----------+

 If the current reaches the block, the variables Element1 and Element2 are added together and the
result is placed in the variable Result.

 In addition to ADD there are SUB (subtraction), MUL (multiplication), DIV (division), AND (bit-to-bit
binary multiplication), OR (bit-to-bit binary addition).

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Other instructions

Symbol (for greater than)

Comparisons

+-----------+
| GRT |

---| Element1 |---
| Element2 |
+-----------+

 The block behaves like a contact, which is closed if Element1 is greater than Element2 and opened
otherwise.

 Other comparisons in addition to GRT area available, like EQU (equal to), NEQ (different from), GEQ
(greater than or equal to), LEQ (less than or equal to), LES (less than).

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Other instructions

Symbol

Transfer

+-----------+
| MOV |

---| OpSource |---
| OpDest |
+-----------+

 If the current reaches the block, the OpSource content is transferred (i.e. copied) to OpDest

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Ladder diagrams: examples

Consider the following ladder diagram:

The logic function is:

On the right side, X denotes the previous value of the variable, while on the left side the new value. This is
reflected in the ladder diagram where the X on the contact denotes the original value of the variable, the X
on the coil the new one.

X = NOT(X) OR (A AND B)

X X
---	/	----------+-----()---		
A B				
---		----		---+

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Flip-Flop SET RESET

Q = (NOT R) AND (Q OR S)

+-----------+
---| S |

| Q |---
---| R |

+-----------+

The output Q is set to 1 if the input S (Set) is set to 1 and remains in such state
until the input R (reset) is set to 1: this makes in any case the output switch to 0
(the Reset input is at higher priority than the Set input).
If neither the Set nor the Reset input are high (1), the output Q keeps the value of
the previous cycle:

S R Q
---		----	/	-------()---
Q				
---		--+		

This can be the logics to enable a motor:
 S: enabling switch
 R: disabling switch
 Q: motor running

Ladder diagram: examples

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Consider the following process:
Pressing a button (START), a green light
(GREEN) turns on for 10s, then it turns
off and a yellow light (YELLOW) turns on
for 5s.
We want to write in LD a PLC program
that implements these functions, using
the START signal as input, and GREEN
and YELLOW as outputs.

Ladder diagram: examples

START GREEN YELLOW GREEN
|----| |-----|/|-----|/|-----(L)-----|
| |
| GREEN +-----------+ |
|----| |---------| Tgreen |-------|
| | 10s | |
| +-----------+ |
| |
| Tgreen GREEN |
----		----------+---(U)------------
	YELLOW	
+---(L)------------		
YELLOW +-----------+		
----		---------
	5s	
+-----------+		
Tyellow YELLOW		
----		--------------(U)------------

Industrial automation and robotics – Logic Control: the PLC – Paolo Rocco

Consider the following process:
Pressing a START button activates an irrigation system
with two separate lines for a total time of 30 min. If the
humidity sensor UMID is active, then LINE1 comes into
operation while LINE2 remains off, otherwise LINE2
comes into operation and LINE1 remains off. This must
happen for 30 min continuously. After 30 min everything
must turn off, until the next START.

Ladder diagram: examples

START ACTIVE ACTIVE
|----| |--------|/|--------(L)-------|
| |
| ACTIVE +-----------+ |
|----| |---------| T1 |-------|
| | 30m | |
| +-----------+ |
| |
| ACTIVE T1 UMID LINE1 |
---		---	/	-----+---		----()-----
	UMID LINE2					
+---	/	----()-----				
T1 ACTIVE						
----		--------------(U)------------				

	Diapositiva numero 1
	�Modulating and logic control
	�Production processes
	�Continuous processes
	�Batch processes
	�Discrete processes
	�Action sequencing and logic control
	�Discrete events systems
	�Discrete events systems: an example
	�Discrete events systems: an example
	�Hierarchical automation systems
	�The programmable logic controller
	�The programmable logic controller
	�The programmable logic controller
	�Programming a PLC
	�Ladder diagram
	�Ladder diagram
	�Ladder diagram: first example
	�Ladder diagram: basic rules
	�Ladder diagram: basic rules
	�The contacts
	�The coils
	�A second example
	�Edge detection contacts
	�Timers
	�Timers
	�Counter
	�Control of the flow
	�Other instructions
	�Other instructions
	�Other instructions
	�Ladder diagrams: examples
	�Ladder diagram: examples
	�Ladder diagram: examples
	�Ladder diagram: examples

