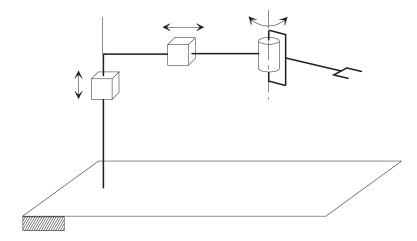


FONDAMENTI DI ROBOTICA

A.A. 2022-2023

Prof. Rocco

24 GENNAIO 2024 - QUARTO APPELLO

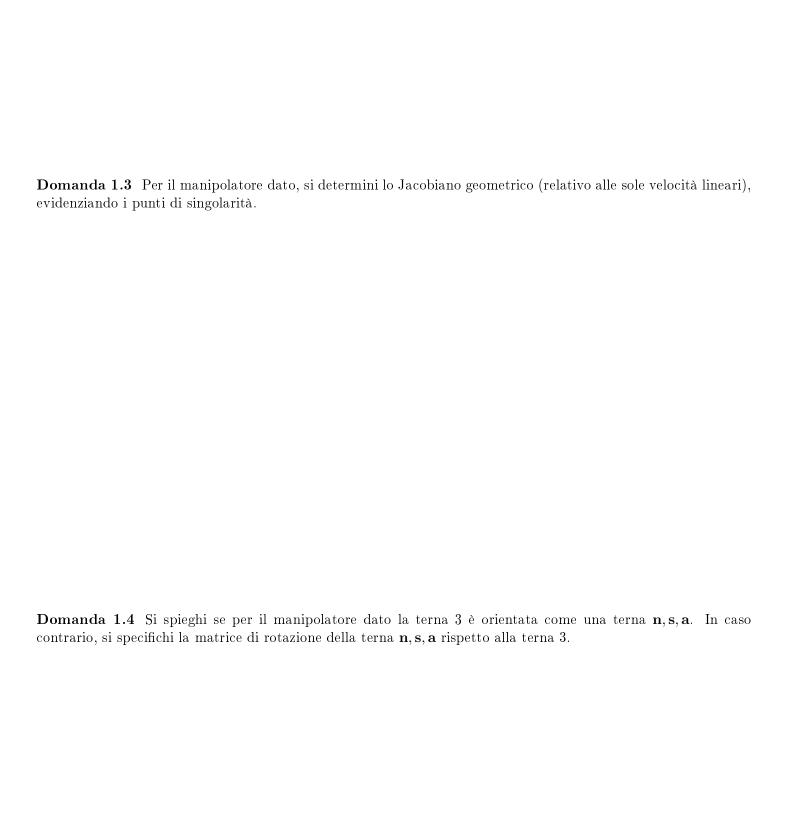

COGNOME E NOME:	
MATRICOLA:	
FIRMA:	

Avvertenze:

- Il presente fascicolo si compone di 8 pagine (compresa la copertina). Firmare il frontespizio.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare la controcopertina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Esercizio 1

Si consideri il manipolatore disegnato in figura:

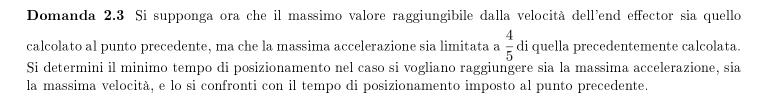

Domanda 1.1 Si riportino, sulla figura stessa, le terne secondo la convenzione di Denavit-Hartenberg e si compili la relativa tabella dei parametri:

	a	α	d	ϑ
1				
2				
3				

Domanda 1.2 Per il manipolatore dato, si scrivano le equazioni della cinematica diretta relativamente alla sola posizione. ¹

$$\mathbf{A}_i^{i-1} = \begin{bmatrix} c_{\vartheta_i} & -s_{\vartheta_i} c_{\alpha_i} & s_{\vartheta_i} s_{\alpha_i} & a_i c_{\vartheta_i} \\ s_{\vartheta_i} & c_{\vartheta_i} c_{\alpha_i} & -c_{\vartheta_i} s_{\alpha_i} & a_i s_{\vartheta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

¹Si ricorda, nel caso la si ritenga utile per la soluzione dell'esercizio, l'espressione della matrice di trasformazione omogenea tra due terne consecutive:

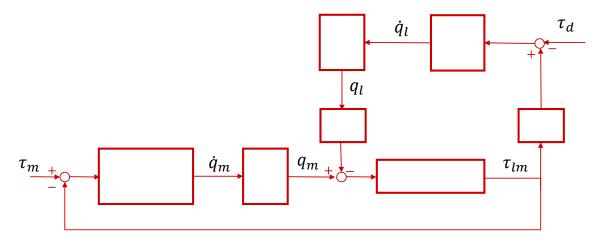

Esercizio 2

Domanda 2.1 Si consideri la generazione della traiettoria di posizione nello spazio Cartesiano. Si prenda come

punto iniziale: $\mathbf{p}_i = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ e come punto finale $\mathbf{p}_f = \begin{bmatrix} 2 \\ -1 \\ \sqrt{2} \end{bmatrix}$. Si scriva l'espressione di un segmento che connetta

i punti iniziale e finale, parametrizzato con l'ascissa curvilinea.

Domanda 2.2 Assumendo un tempo di percorrenza T=1s, si progetti una traiettoria che copra il cammino geometrico prima determinato, usando un profilo di velocità trapezoidale con tempo di accelerazione $T_a=0.2s$. Si determinino in particolare l'accelerazione iniziale e la velocità di crociera dell'end effector.



Domanda 2.4 Nelle traiettorie a profilo di velocità trapezoidale l'accelerazione presenta delle discontinuità. Si disegni un profilo di accelerazione che possa ovviare a questo inconveniente, pur mantenendo un tratto centrale della traiettoria a velocità costante.

Esercizio 3

Si consideri un servomeccanismo elastico.

Domanda 3.1 Definendo τ_m la coppia motrice, τ_{lm} la coppia trasmessa tra motore e carico, τ_d una coppia di disturbo lato carico, q_m e \dot{q}_m posizione e velocità lato motore, q_l e \dot{q}_l posizione e velocità lato carico, e facendo riferimento alla seguente figura, si completi lo schema a blocchi corrispondente al modello dinamico del servomeccanismo:

Domanda 3.2 Si tracci l'andamento qualitativo del diagramma di Bode del modulo della risposta in frequenza da coppia motrice a velocità motore (in assenza della coppia di disturbo τ_d e nell'ipotesi $D_m = 0$) e si confronti tale diagramma con quello dell'approssimazione rigida della stessa risposta in frequenza.

Domanda 3.3 Si assumano ora i seguenti valori dei parametri fisici:

$$J_m = 0.01kgm^2$$

$$D_m = 0$$

$$\rho = 1$$

Nel corso di un esperimento eseguito bloccando meccanicamente il motore, si sono riscontrate sul carico oscillazioni poco smorzate di periodo pari a 0.0314 s.

Si determini un valore della costante elastica K_{el} della trasmissione compatibile con i dati del problema.

Domanda 3.4 Si determinino il guadagno proporzionale e il tempo integrale di un regolatore PI di velocità opportunamente tarato.