

FONDAMENTI DI AUTOMATICA

A.A. 2022-2023

Prof. Rocco

5 Settembre 2023 - Appello

COGNOME E NOME:	
MATRICOLA:	
FIRMA:	

Avvertenze:

- Il presente fascicolo si compone di 10 pagine (compresa la copertina). Firmare il frontespizio.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare la controcopertina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Si consideri il circuito elettrico in Figura 1

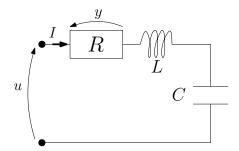


Figura 1: Circuito elettrico.

dove L > 0 e C > 0 sono l'induttanza e la capacità dell'induttore e del condensatore, rispettivamente, mentre il blocco R è una resistenza nonlineare la cui tensione y è legata alla corrente I dall'espressione $y = I^3 + \alpha I$.

Domanda 1.1 Si scrivano le equazioni in spazio di stato del sistema dinamico con ingresso u e uscita y, che descrive il circuito elettrico.

$$\dot{x}_1 = \dot{x}_2 = y =$$

Domanda 1.2 Si ricavi lo stato di equilibrio in corrispondenza dell'ingresso costante $\bar{u} = 5$.

$$\bar{x}_1 =$$
 $\bar{x}_2 =$
 $\bar{y} =$

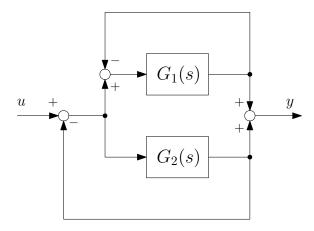
Domanda 1.3 Si determinino le matrici A, B, C, D che descrivono il sistema linearizzato intorno allo stato di equilibrio calcolato al punto precedente, e si valuti per quali valori del parametro α l'equilibrio è asintoticamente stabile.

 α :

Domanda 1.4 Ponendo L=C=1 e $\alpha=2$ si determini l'espressione della funzione di trasferimento per il sistema linearizzato precedentemente trovato.

G(s) =

Si consideri lo schema a blocchi rappresentato nella seguente figura, dove $G_1(s)$ e $G_2(s)$ sono le funzioni di trasferimento di due sistemi LTI.



Domanda 2.1 Calcolare l'espressione G(s) della funzione di trasferimento tra u e y, in funzione di $G_1(s)$ e $G_2(s)$.

$$G(s) =$$

Domanda 2.2 Si discuta la stabilità dello schema a blocchi complessivo, in funzione delle proprietà stabilità delle funzioni di trasferimento $G_1(s)$ e $G_2(s)$.

Domanda 2.3 Sapendo che quando $G_1(s) = G_2(s) = \frac{1}{s+\alpha}$, con α parametro reale, la funzione di trasferimento G(s) vale

$$G(s) = \frac{2s + 2\alpha + 1}{s^2 + (2+2\alpha)s + (\alpha+1)^2},$$

si trovino, se possibile, i valori del parametro α per cui la variabile y(t) si assesta al valore $y_{\infty} = -3$, a fronte di uno scalino unitario di u(t).

 α :

Domanda 2.4 Considerando $\alpha = 0$, si spieghi se G(s) risulta essere un sistema a fase minima.

Si consideri il sistema di controllo a tempo continuo schematizzato nella Figura 2

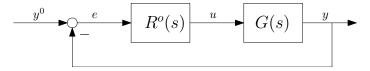


Figura 2: Sistema di controllo.

dove

$$R^{\circ}(s) = \frac{1+s}{s}$$
 e $G(s) = \frac{30}{(s+1)(s+10)}$

Domanda 3.1 Si determini un valore adeguato del tempo di campionamento $T_{\rm C}$.

$$T_{
m C} =$$

Domanda 3.2 Si ricavi, adottando la trasformazione di Tustin (del trapezio), la funzione di trasferimento $R^*(z)$ del corrispondente regolatore digitale.

$$R^*(z) =$$

Domanda 3.3 Considerando il regolatore digitale $R^*(z)$ trovato al punto precedente si scriva l'equazione alle differenze che lega $u^*(k)$ e $e^*(k)$, esplicitando il procedimento seguito per ottenerla.

$$u^{*}(k) =$$

Domanda 3.4 Calcolare i primi 5 campioni della risposta all'impulso di $R^*(z)$.

$$u(0) = u(1) = u(2) = u(3) = u(4) =$$

Si consideri il sistema di controllo schematizzato nella Figura 3

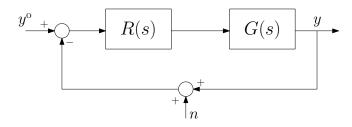


Figura 3: Sistema di controllo.

dove

$$G(s) = 10 \frac{1 + 0.3s}{(s+1)^2}$$

Domanda 4.1 Si determini la funzione di trasferimento R(s) del regolatore in modo tale che:

- 1. con riferimento $y^{\circ}(t) = 10sca(t)$ e in assenza del disturbo n, l'errore $e(t) = y^{\circ}(t) y(t)$ soddisfi la limitazione, a transitorio esaurito, $|e_{\infty}| < 0.15$;
- 2. Il disturbo $n(t) = \sin(\bar{\omega}t)$, con $\bar{\omega} \ge 3 \text{ rad/s}$, sia attenuato sull'uscita y di un fattore almeno pari a 100;
- 3. Il margine di fase φ_m sia maggiore o uguale di 80°;
- 4. La pulsazione critica ω_c sia maggiore o uguale di 0.1 rad/s.

A conclusione del progetto, si riporti l'espressione del regolatore:

$$R(s) =$$

Domanda 4.2 Si consideri ora la funzione di trasferimento G(s) del punto precedente caratterizzata da un ritardo di 2 s. Mantenendo valido il regolatore progettato al punto precedente, si scriva la nuova espressione della funzione d'anello L(s) comprensiva del ritardo, e si calcoli il nuovo margine di fase.

$$L(s) =$$

 $\varphi_m =$