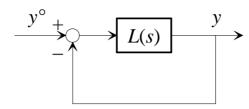
Fondamenti di Automatica

(Prof. Rocco)

Seconda prova scritta intermedia Anno accademico 2014/2015 29 Giugno 2015

Cognome:	
Nome:	
Matricola:	
	Firma:

Avvertenze:


- Il presente fascicolo si compone di 8 pagine (compresa la copertina). Tutte le pagine utilizzate vanno firmate.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare l'ultima pagina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Firma:			
1 IIIIIa	 	 	

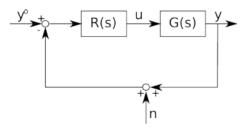
 $\begin{tabular}{ll} Utilizzare questa pagina SOLO in caso di correzioni o se lo spazio a disposizione per qualche domanda non è risultato sufficiente \\ \end{tabular}$

Esercizio 1

Si consideri il sistema dinamico retroazionato:

dove
$$L(s) = \frac{10}{1+s} \frac{1-s\tau}{1+s\tau}, \quad \tau \ge 0$$

1.1 Si determini il valore di τ in modo che il margine di fase del sistema di controllo valga 20° .


1.2 Con il valore di τ determinato al punto precedente, si scriva l'espressione di una funzione di trasferimento del primo o secondo ordine che approssimi il comportamento del sistema in anello chiuso. Si calcoli il valore esatto che assume il modulo della risposta in frequenza associata a tale funzione di trasferimento alla pulsazione critica.

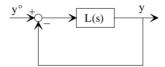
1.3 Si determinino il tempo d'assestamento al 99% e il periodo delle oscillazioni della risposta di y ad uno scalino unitario in y^o .

1.4 Si disegni il diagramma di Nyquist associato alla funzione di trasferimento d'anello, indicando la posizione del punto -1.

Esercizio 2

Si consideri il seguente sistema di controllo:

dove
$$G(s) = \frac{1-s}{(1+10s)^2}$$
.


- **2.1** Si determini la funzione di trasferimento R(s) del regolatore in modo tale che:
- L'errore e a transitorio esaurito, e_{∞} , soddisfi la limitazione: $|e_{\infty}| \le 0.15$ quando y° è uno scalino di ampiezza unitaria, in assenza del disturbo n.
- Il disturbo $n(t) = N \sin(\overline{\omega}t)$, con N ampiezza arbitraria e $\overline{\omega} \ge 3$, sia attenuato sull'uscita y di un fattore almeno pari a 100
- Il margine di fase φ_m sia maggiore o uguale di 75°.
- La pulsazione critica sia maggiore o uguale di 0.1 rad/s.

		Firma:
2.2	Si definicas la funzione di cancitività a ci citino due problemi nell'anal	lici dai cistami di controllo in qui la funzione
2.2	Si definisca la funzione di sensitività e si citino due problemi nell'anal di sensitività assume rilievo.	ilsi dei sistenii di controllo ili cui la funzione

2.3 Per il sistema di controllo del presente esercizio, si tracci il diagramma di Bode del modulo approssimato della funzione di sensitività.

Esercizio 3

Si consideri il sistema dinamico in retroazione:

in cui
$$L(s) = \rho \frac{s-3}{(s+1)(s+2)^2}$$
.

3.1 Si tracci il luogo delle radici diretto.

C:		
Firma:	 	• • • •

3.2 Si tracci il luogo delle radici inverso.

3.3 Sulla base dei luoghi tracciati, si determini l'insieme dei valori di ρ per cui il sistema in anello chiuso è asintoticamente stabile.

3.4 Quando almeno uno dei tre poli del sistema in anello chiuso ha parte reale −3, il sistema in anello chiuso è asintoticamente stabile?

Esercizio 4

4.1 Si consideri il segnale a tempo discreto:

$$v(k) = 2^k, \quad k \ge 0$$

Se ne determini l'espressione della trasformata Zeta a partire dalla sua definizione.

٦.		
4.00000		
firma:		

4.2 Si consideri ora il segnale a tempo discreto:

$$w(k) = k2^k, \quad k \ge 0$$

Se ne determini l'espressione della trasformata Zeta sulla base di una delle proprietà note della trasformata.

4.3 Si consideri ora il sistema di funzione di trasferimento:

$$G(z) = \frac{z}{z^2 - 5z + 6}.$$

Si determini l'espressione analitica della risposta di *G* allo scalino unitario.

4.4 Utilizzando i teoremi appositi, si valutino il valore iniziale e l'eventuale valore finale della risposta di *G* allo scalino unitario, confrontando i risultati con quanto ottenuto al punto precedente.